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Abstract1

2

Recent quantitative work on the variable [g]~[ŋ] alternation in compounds of certain di-3

alects of Japanese has revealed token frequency of the compound as a whole, and of the com-4

pound’s second-member (N2) in its freestanding form, to be important predictors of the alter-5

nation. In this paper, we propose a formal phonological analysis that integrates usage-based6

factors like frequency with the action of the phonological grammar, extending mechanisms7

of lexicon-grammar interaction previously proposed in the context of Lexical Conservatism.8

We demonstrate that our model fits the experimental data better than—or at least compara-9

bly to—a theoretically-naïve statistical model proposed in the previous work. Based on the10

success of our modeling, we discuss the role of token frequency in phonological patterning11

more broadly, and how the mechanism that we propose might be extended to unify a range12

of contradictory frequency-dependent processes that have been observed in the literature.13

1 Introduction14

This paper is about how to integrate information about usage frequency—here, the token fre-15

quency of morphemes in the language experience of an individual speaker—into a constraint-16

based phonological grammar formalism that characterizes that speaker’s generative linguistic17

knowledge.18

∗This work was supported in part by JSPS grant #22K00559 to the third author. Thanks to
Connor Mayer, as well as audiences at the University of Southern California and the University of
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We take as our empirical case the frequency-conditioned variability in optional paradigm uni-19

formity in voiced velar nasalization (henceforth “nasalization”) in phonologically-conservative20

Japanese dialects, recently studied using corpus data by Breiss et al. (2021b) and experimentally21

verified in Breiss, Katsuda and Kawahara (to appear) — henceforth BKK. These studies are the22

latest in a long research tradition centered on the allophonic distribution of /g/ in conserva-23

tive Japanese dialects, where a static phonotactic restriction enforces /g/ to be realized as [g]24

prosodic-word-initially and [ŋ] elsewhere (e.g. Kindaichi 1942; Trubetskoy 1969; Labrune 2012).25

This correspondence is disrupted in compounds with /g/-initial second member (N2) that can oc-26

cur as a free morpheme: in compounds with N2s that do not occur as free-standing words, the27

/g/ → [ŋ] alternation is exceptionless, but in compounds where N2 may additionally occur as a28

free-standing word (that is, with initial [g]) the nasalization process is optional (Ito and Mester,29

1996, 2003).30

Thecontribution of recentwork by BKK (reviewed in section 3) is to characterize this variation31

in quantitative detail, and in particular to highlight how the token frequency of both the com-32

pound and the free N2 impact the outcome of optional nasalization: higher frequency compounds33

encouragemore nasalization ofmedial /g/ to [ŋ], while higher frequency free N2s encouragemore34

retention of medial /g/ as [g], remaining uniform across the paradigm of their free-standing forms35

and compound forms (Steriade, 2000; Benua, 2000).36

Thenovel contribution of this paper is to provide a formally explicit model of the experimental37

data. The model builds upon the Voting Bases model of lexicon-grammar interaction (Breiss,38

2024), originally proposed to model Lexical Conservatism (Steriade, 1997). Lexical Conservatism39

is a type of paradigm uniformitywhere the distribution of stem allomorphs (referred to as “bases”)40

in a paradigm influences the way that paradigm accommodates new members. The canonical41

example comes from Steriade (1997), who observed that the phonologically-similar forms rémedy42

and párody differ in their behaviorwhen affixedwith -able, yielding remédiablewith shifted stress,43

but párodiable, with fixed stress. She argued that this difference stems not from the forms remedy44

and parody themselves, but from the fact that remedy has a stem allomorph remédi- in remédial45

that satisfies the marked lapse arising from affixation.46

Breiss (2024) examined the same Lexical Conservatism dependency using novel derived forms47

(like lábor + -able, with related form labórious, and pláster + -able with no phonologically-48

advantageous related form), and found that in experimental settings, speakers are sensitive not49

only to the presence of the phonologically-beneficial stem allomorph (like remédial and labórious),50

but also to its salience in the lexicon as manipulated by priming. To account for these data, he51

proposed a formal phonological model that integrates the influence of the contents of the lexi-52

con along with their resting activation, enabling the phonological grammar to be sensitive to the53

psycholinguistic properties of the morphemes which it manipulates. Breiss (2024) termed this54
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formal model of lexicon-grammar interaction the Voting Bases model.55

In this paper, we demonstrate that the Voting Bases model extends, without modification, to56

the separate case of lexicon-grammar interaction found in Japanese nasalization. The success57

of the model suggests that the foundational principles of the Voting Bases model may be a good58

candidate for a general theory of the way that the lexicon and grammar interact. This finding also59

underscores the explanatory value to be gained for phonological phenomena by adopting a more60

psycholinguistically-nuanced portrait of the lexicon as a dynamic substrate that can influence the61

computations of the grammar on the items which it contains. In section 6.3 we take up a series of62

questions which arise when adopting this boundary-blurring approach, in light of the traditional63

dichotomy between generative and usage-based perspectives on linguistic data.64

The layout of the paper is as follows: the first two sections of the paper review in some65

depth basic facts about Japanese nasalization drawn from the literature (section 2), and then66

specifically reviews in detail Experiment 1 of BKK (section 3). Though thismay not constitute new67

information, we hope the reader will find its inclusion helpful in contextualizing the theoretical68

analysis. The following section, 4, focuses on the Voting Bases model, and how we apply it69

to the context of optional paradigm uniformity. Section 5 then actually fits the model to the70

experimental results, and discusses relative and absolute model fit in comparison to minimally-71

different models that incorporate only some of the assumptions of the Voting Bases model. The72

paper closes in section 6 with a discussion of broader issues, touching on how such a system73

might come to be in the mind of the learner, on the merits of a joint model of psycholinguistic74

and grammatical influence on word formation, and on what a unified theory of token frequency75

effects on the phonological grammar might look like.76

2 The traditional picture of Japanese nasalization77

The data that we model in this paper comes from Experiment 1 of BKK, which investigated the78

variation between [g] and [ŋ] induced by the phonotactics of phonologically-conservative di-79

alects of Japanese. The pattern, which has been well-studied in both descriptive (Kindaichi, 1942;80

Trubetskoy, 1969; Hibiya, 1995) and generative (Labrune, 2012; Ito and Mester, 1996, 2003) lit-81

erature on Japanese linguistics, is exemplified in the complementary distribution of [g] and [ŋ]82

shown in the monomorphemic data in example (1) below, where the voiced oral velar stop is only83

permitted word-initially, and the velar nasal is only permitted word-medially.84

(1) a. /kaŋami/ → [kaŋami]85

“mirror”86

b. /gake/ → [gake]87
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“clif”88

We assume throughout that non-alternating forms are stored surface-true as URs in the lexi-89

con, in accordance with the phonological tradition of (Strong) Lexicon Optimization (Prince and90

Smolensky, 1993; Sanders, 2003). This stance is supported by psycholinguistic research on the91

contents of lexical representations, reviewed in section 4.1.92

Japanese’s extensive use of compounding in word-formation gives the opportunity for the93

phonotactic restriction to drive alternations, seen in examples (2)-(5) below. Here we see that94

when a /g/-initial morpheme is word-initial (either as a prosodically-free word, in examples (2)–95

(4), or as the first member (N1) of a compound, in example (5)1), it is realized with an initial [g],96

while when it occurs as the second member of a compound (N2) it is realized with initial [ŋ].97

Critically for the current study, Ito and Mester (1996) observed that although in all cases the /g/-98

initial N2 may be realized word-medially with initial [ŋ], nasalization is optional when the N299

can stand on its own as a prosodically-free form (cf. the “b” series in (2)–(4) vs. (5c))—a case of100

optional paradigm uniformity.101

(2) a. /hai +
lung

gan/
cancer

→ [hai-ŋan] ~ [hai-gan]102

“lung cancer”103

b. /gan/→ [gan]104

cancer105

“cancer”106

(3) a. /noo +
brain

geka/
surgery

→[noo-ŋeka] ~ [noo-geka]107

“brain surgery”108

b. /geka/→ [geka]109

surgery110

“surgery”111

(4) a. /doku +
poison

ga/
moth

→ [doku-ŋa] ~ [doku-ga]112

“poison moth”113

b. /ga/ → [ga], “moth” (a free-standing morpheme)114

(5) a. /doku +
poison

ga/
fang

→ [doku-ŋa], *[doku-ga]115

“poison fang”116

1We temporarily adopt here for the traditional assumption that the [g]-initial form of a free N2 is underlying,
for expository ease and continuity with the previous literature. Our own proposal is laid out in section 4.
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b. /ga +
fang

ʒoo/→
castle

[ga-ʒoo]117

“main castle”118

c. /ga/→
fang

*[ga] (a bound morpheme)119

“fang”120

Breiss et al. (2021b) examined this variation in a corpus derived from a pronunciation dic-121

tionary (NHK, 1993) and found that among compounds with free N2s, the two most prominent122

predictors of whether an item would be nasalized was the frequency of the N2’s free [g]-initial123

form, and the frequency of the whole compound. These effects ran in opposite directions: higher124

frequency compounds were more likely to be nasalized (the left facet of Figure 1); on the other125

hand, the more frequent the free N2, the less likely the nasalization was (the right facet of Figure126

1).127

Figure 1: The effects of whole compound frequency (left facet) and N2 frequency (right facet)
on the probability of nasalization (vertical axis), with binomial smooths in the corpus data. One
dot represents one lexical item; vertical jitter has been added for readability. Figure and caption
adapted with permission from Breiss et al. (to appear), data from Breiss et al. (2021b).

The corpus data was modeled as a case of probabilistic paradigm uniformity in Breiss et al.128

(2021a) using Output-Output Faithfulness constraints (Benua, 2000) indexed to items binned by129

the relative frequency of each compound andN2. The paperwas limited, however, by the untested130

assumption of their model that the frequency-modulation of paradigm uniformity in their cor-131

pus data actually represents the synchronic knowledge of speakers. Additionally, their formal132

model was not explicitly informed by psycholinguistic considerations and thus its linking hy-133

pothesis between frequency (necessarily a lexical characteristic) and the phonological grammar134
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had a problem of simply being stipulative—in other words, there was nothing in their model that135

prevented the opposite relation between frequency and paradigm uniformity from holding.136

In this paper, we offer two improvements on the state of affairs in Breiss et al. (2021a). First, we137

model experimental data from Breiss et al. (to appear) (BKK) where the frequency-conditioning138

of the variable paradigm uniformity is reproduced in existing compounds and extended to novel139

ones. Second, we do this by extending the Voting Bases model of Breiss (2024) which is compat-140

ible with consensus understanding of the way lexical frequency is connected to the lexical rep-141

resentation and activation, and which offers an explicit linking hypothesis relating the real-time142

dynamics of the lexicon to the representation and computations of the phonological grammar.143

3 BKK’s Experiment 1144

BKK carried out two experiments on Japanese nasalization, with the goal of seeing whether the145

corpus patterns were representative of speakers’ generalizable knowledge, both in the aggregate146

and as individuals. They found that both individually and in aggregate, speakers’ propensity to147

nasalize displayed sensitivity to the frequency of the free N2 and compound, in existing and novel148

compounds. In this paper, we focus our modeling efforts on the results of their Experiment 1,149

which we describe in some detail below.2150

BKK’s stimuli were roughly balanced between existing Japanese compounds of varying fre-151

quencies, and novel (i.e., zero-frequency) semantically-compositional Sino-Japanese compounds.152

Both existing and novel stimuli had attested free N2s of a range of frequencies. Out of a desire to153

sample compounds with a wide range of frequencies that would likely be known to participants,154

existing compounds ranged from two to eight moras in length, while all novel compounds were155

four moras long. Complete details of the experimental materials are available from BKK’s OSF156

repository3.157

BKK recruited speakers of the phonologically-conservative Tōhoku dialect of Japanese, and158

used a short dialect questionnaire to ensure that their speech exhibited the allophonic distribution159

of word-initial [g] and word-medial [ŋ]. For the purposes of the model which we develop, we will160

see that these monomorphemic words provide crucial evidence for the lower bound of the weight161

of the markedness constraint driving nasalization, since with data from compounds alone, it is162

not uniquely identified against the background of faithfulness constraints that the Voting Bases163

model uses (see section 5 for further details).164

2They also sought to determine whether correlation between nasalization and the overall prosodic size of the
compound, which is observed in the corpus (Breiss et al., 2021b) but is a typologically unusual pattern, was repli-
cated in participants’ online productions (Experiment 2). They actually found that there was no evidence of a direct
relationship between nasalization and global prosodic length (cf. Jiang 2023). We therefore do not address this ex-
perimental data here, as our point is made in the simpler case of data from Experiment 1.

3https://osf.io/avnpw/?view_only=cd2afdcc183f4de3ac1261b4af66f08d
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The dialect questionnaire consisted of a production task where speakers were asked to read165

aloud 10 monomorphemic words with word-initial [g] of varying frequencies, and 10 monomor-166

phemic words with word-medial [ŋ]. The stimuli were written with kanji orthography, which167

does not distinguish between [g] and [ŋ]—this is also true of the main production experiment168

described below, so we follow BKK in assuming that the participants’ production was not influ-169

enced by orthographic factors. The twenty words were shown to the participant in a random170

order, and their productions were recorded; only the eight participants who exhibited the target171

pattern of allophony in all monomorphemes were invited to participate in the main experiment.172

After this knowledge check, participants saw each compound one at a time in a random order,173

and produced the form aloud while their speech was recorded. Participants also produced and174

indicated knowledge of all of the free N2s in the experiment, as well as all of the compounds. See175

Breiss et al. (to appear) for complete details.176

3.1 Results177

BKK found that the participants reflected at an individual level the frequency-conditioned vari-178

ability seen in the corpus study of Breiss et al. (2021b). In existing compounds (Figure 2), their179

productions were influenced by both the frequency of the compound (the left facet), for which180

higher values correlated with more nasalization, and by the frequency of the free N2 (the right181

facet), where higher values correlated with less nasalization.182

Figure 2: Probability of nasalization (the vertical axis) plotted against compound log-frequency
(the left facet) and N2 log-frequency (the right facet) in existing words, with binomial smooths for
readability, in the experiment by BKK. Plot and caption reproduced with permission from Breiss
et al. (to appear).

7



Figure 3 plots the same effect of N2 frequency in novel compounds: forms with higher-183

frequency N2s were less likely to undergo nasalization relative to those with lower-frequency184

N2s.185

Figure 3: The probability of undergoing nasalization in novel compounds, plotted against N2
log-frequency, with a binomial smooth to aid readability. Plot and caption reproduced with per-
mission from Breiss et al. (to appear).

Finally, BKK found that the frequency effect was stable at the level of the individual, across186

existing and novel compounds, which is plotted in Figure 4. In this figure, the horizontal axis plots187

the strength and direction of the effect of N2 log-frequency in novel compounds, and the vertical188

axis plots the strength and direction of the effect of N2 log-frequency in the existing compounds;189

see the caption of Figure 4 for further details. Although different participants were more or less190

sensitive to the frequency of a given N2, lying higher or lower on each axis, there was uniformity191

in this degree of sensitivity such that the two co-varied along a diagonal line through the center192

of the plot. BKK interpreted this correlation as evidence that morpheme usage frequency and193

phonological markedness have separable, distinct influences on speaker productions.194

3.2 Summary and goals for modeling195

To summarize, the findings of BKK that are relevant for the modeling task of this paper are196

the following. Among those speakers for whom the phonotactic restriction enforcing [g]~[ŋ]197

allophony was exceptionless in monomorphemic words:198

1. Phonotactically-driven nasalization is variable in compounds with free N2s.199
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Figure 4: The coefficient of N2 log-frequency in novel compounds, derived from the model in
Table 1 of Breiss et al. (to appear), is plotted on the horizontal axis, and the coefficient for N2
log-frequency in existing compounds, derived from the model summarised in Table 3 of Breiss
et al. (to appear), is plotted on the vertical axis. Points represent median values of the posterior
with ranges encompassing the 95% Bayesian Credible Intervals, colors represent speakers, and a
linear smooth has been added for readability, with the line of slope 1 intersecting the origin in
dotted red. Plot and caption adapted with permission from Breiss et al. (to appear).

2. In these compounds, the probability of nasalization is increased by higher compound fre-200

quency, and decreased by higher N2 frequency.201

3. The frequency effect is uniform within individuals across existing and novel compounds.202

Below, we propose a formal model of these facts, using the Voting Bases model to relate a lexicon203

containing usage-frequency information to a phonological grammar couched in the Maximum204

Entropy (MaxEnt) framework.4205

4 Modeling token frequency in the phonological grammar206

Based on the facts laid out above, we seek a model of the phonological grammar that allows207

non-phonological properties of individual lexical items (here, frequency) to influence their par-208

4We do not attempt to model the frequency of the first compound member, N1, on the probability of nasal-
ization in compounds, since this was not manipulated by BKK. Future work might profitably pursue this question
experimentally and formally, since corpus data in Breiss et al. (2021b) suggests that higher N1 frequency may also
independently lower the probability of nasalization; see Rebrus and Törkenczy (2017) for a similar finding of N1
frequency on compound coherence in Hungarian vowel harmony.
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ticipation in phonological processes (here, paradigm uniformity). Note that we specifically aim209

to model phonological and non-phonological influences on the outputs of the phonological gram-210

mar, rather than any possible morphological or paradigmatic effects on phonetic realization (see211

Purse et al. 2022 for a review), about which the Voting Bases model as laid out in Breiss (2024)212

makes no predictions.213

4.1 The contents of a lexical entry214

As prolegomena to the grammatical model, it will be important to establish some relevant context215

regarding the contents of the lexicon, because it is these representations that are at stake in216

discussions of token frequency. Psycholinguistic research has amassed a large body of evidence217

that the lexicon is richly structured, with numerous types of linked representations of various218

levels of detail grouped under the same lexical entry. We do not review this research in depth219

here, but simply highlight the findings relevant to developing the type of integrated phonological220

theory referenced above. For a thorough discussion and literature review on the (phonologically-221

relevant) contents of a lexical entry, see Pierrehumbert (2016); for more on how this information222

interacts with the Voting Bases theory in cases beyond those relevant for the nasalization, see223

Breiss (2021, 2024).224

Since nasalization concerns paradigm uniformity, we assume the lexical entry for an existing225

word lists (among many other things) their allomorphs (cf. Strong Lexicon Optimization em-226

braced by Sanders 2006, as well as arguments by Wang and Hayes 2025 on the sufficiency of227

less-abstract URs): for a non-alternating monomorpheme like [kaŋami] “mirror”, this would be228

simply /kaŋami/; for a monomorpheme that can appear as an N2 and undergo nasalization, such229

as [ga]–[ŋa] “moth”, the lexical entry would list both /ga/ and /ŋa/. Finally, we assume that ex-230

isting compounds are stored whole, with nasalization applied so as to respect the phonotactic in231

the lexicon (Albright, 2008; Martin, 2007).5232

With regard to non-phonological characteristics of the lexicon, we follow a large body of233

evidence that lexical representations have differing degrees of salience or strength of encoding.234

Following Breiss (2021, 2024), we refer to this quantity as resting activation, borrowing the term235

(though not the theory) from Morton (1970), which corresponds to the strength of a memory236

representation itself, not a number or rank stored in long-term memory as a characteristic of the237

lexical item. Thus, characteristics (long-term or dynamic) of lexical items like their frequency,238

and whether or not they were recently activated (for example, by priming), all contribute dynam-239

5On the suggestion of a reviewer, we relaxed this assumption by fitting a comparable model but assuming stored
allomorphs for both oral and nasal forms of the compound, with corresponding faithfulness constraints for each.
Such a model returns weights and fits to the data identical to the one without the relevant faithfulness constraint,
indicating that it is thus at best superfluous in explaining the data. This exercise shows that our assumption here is
well-founded, or at least benign. Details of the model fit can be found in the supplementary materials.
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ically to an item’s resting activation. Importantly, also following Breiss, we use the term “resting240

activation” as a stand-in for any scalar summary statistic that can be derived from an imple-241

mented model of lexical dynamics. We remain intentionally agnostic as to the specific model of242

these dynamics, whether the specific model endorsed by Morton (1970) or not, simply stressing243

that so long as such a model can be used to drive a measure of relative salience influenced by the244

factors just mentioned, the Voting Bases model can make reference to it to scale faithfulness con-245

straint violations (cf. e. g. Luce and Pisoni, 1998). We discuss how resting activation is modeled246

as influencing the phonological grammar below in section 4.4.247

4.2 The Voting Bases model248

We now turn to a formal phonological model of the Japanese nasalization data. We use the Voting249

model of Base competition proposed in Breiss (2021, 2024). The Voting model has been used to250

model data in Lexical Conservatism in English and Spanish, and is broadly compatible with the251

view of the lexicon laid out above. Here, we extend the scope of the model by analyzing the252

probabilistic paradigm-uniformity found in Japanese nasalization.253

The Voting Bases model has two parts: the first is that all listed stem allomorphs in the lexi-254

con exert an analogical pull on derivatives (operationalized using allomorph-specific faithfulness255

constraints), violations of which are scaled in proportion to the resting activation of the repre-256

sentation to which faithfulness is being assessed. We note that the terminology of “bases” comes257

from the original context for which the model was developed, but here the term can be read258

as a synonym for “stored allomorph”.6 The second part is that markedness constraints evaluate259

candidates in the standard way for any constraint-based phonological models.260

The Voting Bases model assumes a probabilistic, weighted-constraint phonological grammar;261

here, we use MaxEnt Harmonic Grammar (Smolensky, 1986a; Goldwater and Johnson, 2003), but262

in principle we could also use another grammar formalism that has these characteristics, like263

Stochastic (or Noisy) Harmonic Grammar (Boersma and Pater, 2016). We use MaxEnt since it has264

various strengths; e.g. it directly relates Harmony to probability (Hayes, 2022), permits constraint265

cumulativity by default (Jäger and Rosenbach, 2006; Breiss, 2020), has a learning algorithm to set266

its weights, and is rooted in well-understood statistical techniques used widely outside linguistics267

(Jurafsky and Martin, 2009, ch. 5). We stress, however, that our analyses can be recast in terms268

of other stochastic constraint-based frameworks.269

6The probabilistic paradigm-uniformity might, as a reviewer points out, be captured in terms of Output-Output
faithfulness (Benua, 2000) instead of the Voting Bases model. This approach was pursued in Breiss et al. (2021a),
but ultimately we abandon it here because it fails to explain the correlation between the degree of faithfulness to
a non-local paradigm form and the relative frequency of the two forms in question. In the Voting Bases model,
this relationship has a clear source by virtue of the explicit location of both URs in a psycholinguistically-dynamic
lexicon; for a more extended comparison between these two approaches, see discussion in Breiss (2024, fn. 5).
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4.3 Constraints270

In the analysis developed in this paper, we adopt the general approach of Ito and Mester (1996,271

2003), following loosely Breiss et al. (2021a). We only use three constraints: a single marked-272

ness constraint to motivate nasalization (extending the spirit of the constraint *VgV from Ito and273

Mester 2003 to be compatible with nasal-final N1s, which pattern identically to vowel-final N1s),274

and a pair of faithfulness constraints which correspond to the second member’s free form and to275

the analogical pull of the compound as a whole, if one exists. They are listed below.7276

• *InteRnal-[g]: Assign one violation for each word-internal [g].277

• Id-[nasal]-N2: Assign one violation for each segment in the listed allomorph for the free-278

standing N2 that does not match its corresponding segment in the feature [nasal].279

• Id-[nasal]-Compound: Assign one violation for each segment in the listed allomorph for280

the full compound that does not match its corresponding segment in the feature [nasal].281

Note that the constraint definitions do not make reference to scaling or the contents of the282

lexicon; the proposal in the Voting Bases model is an architectural proposal about how psycholin-283

guistic, “extra-grammatical” factors act within and beside the phonological grammar to influence284

certain variable phenomena.285

4.4 Modeling resting activation286

The discussion in 4.1 above left open how a specific numerical value for resting activation might287

be calculated on the basis of the psycholinguistic characteristics of item’s lexical entry. Here,288

we model the data using the log-frequency of the allomorph, passed through a sigmoid function289

1
1+e−logfreq that translates the linear predictor (i.e. −logfreq) into the bounded interval of {0,1},290

which will be the scaling factor applied to faithfulness violations. This is illustrated in Figure 5.291

The effect of this non-linear transformation will be to preserve the idea that it is less penalized to292

be unfaithful to low-frequency lexical items compared to higher-frequency ones, while damping293

down the difference between extreme values of the scale and rendering it bounded.294

The final move we make here is rather than using raw log-frequencies, we use scaled and295

centered log-frequencies, following the statistical analysis in BKK.This corresponds to the notion296

that it is not so much the absolute frequency of each item that is important, but how frequent it297

is relative to the other competitor items in the lexicon (here approximated by the population of298

7The first faithfulness constraint plays the same role as faithfulness to the Remote Base in an analysis of Lexical
Conservatism. The second faithfulness constraint parallels faithfulness to the Local Base in a Lexical Conservatism
analysis (Breiss, 2021, 2024). We use more transparent names here for the sake of clarity, since nothing in the Voting
Bases model structurally prioritizes Local Bases over Remote ones.
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Figure 5: Sigmoid function that translates the (centered) frequencies into the scaling factors. See
text for details.

items in the experiment), which is in line with previous work on morphological decomposition299

in stored forms (Hay, 2001). Finally, in the analysis that we develop below, we do not model the300

priming of N2, since BKK did not find substantial evidence that it affected their experimental301

data.8302

4.5 Schematic illustrations303

Before modeling the experimental data itself, it will be useful to work with some toy data to get304

a feel for how resting-activation-scaled faithfulness violations interact with the dynamics of a305

MaxEnt grammar. First, let us consider the case of novel compounds, since they are the simplest306

case to lay out the workings of the analysis. Recall the empirical pattern: here, although the307

frequency of the compound is zero, we nevertheless find that nasalization is modulated by the308

frequency of N2. Now, consider the case of two hypothetical novel compounds, onewith a higher-309

frequency N2, and one with a lower-frequency N2, such that when the sigmoid transformation310

is applied to their frequencies the higher-frequency form scales its violations of Id-[nasal]-N2 by311

0.7, and the lower scales its own violations of the same constraint by 0.3 (these specific numbers312

8The Voting Bases framework is easily extensible to multiple predictors of resting activation: to incorporate
priming, for instance, one could simply treat the term passed into the sigmoid as itself a log-linear model, adding a
coefficient (weight) for the effect of priming, in addition to a coefficient for the effect of lexical frequency. This is
beyond the current scope of this paper, however, and so we simply assume a fixed coefficient for lexical frequency,
since there being only one predictor in the log-linear model for resting activation would make the coefficient of
frequency redundant with the weight of the faithfulness constraint being scaled. Similarly extensions of the Voting
Bases model could also model by-participant variability in the priming effect using a hierarchical model structure.
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are chosen purely for the sake of illustration). Using the constraints defined in section 4.3 above,313

we can define the tableaux below in Figure 6.314

/…/N1, /g…/High−freq.N2 *InteRnal-[g] Id-[nas]N2

Weight: 2 1 H p
a. […g …] 1 2 .21
b. […ŋ …] .7 .7 .79

/…/N1, /g…/Low−freq.N2 *InteRnal-[g] Id-[nas]N2

Weight: 2 1 H p
c. […g …] 1 2 .15
d. […ŋ …] .3 .3 .85

Figure 6: Schematic application of the Voting model of Base Competition to the formation of a
novel compound in the wug-test.

We can see that the pull of faithfulness to the N2 with higher frequency is stronger than315

the one with lower frequency, though both are relatively marginal outcomes since the weight of316

*InteRnal-[g] dominates the distribution of probabilities in this scenario.317

Moving on to existing compounds, we now must add another item to the lexical entry we are318

considering in our left-hand input cell to our tableaux, shown in Figure 7. For the sake of minimal319

contrasts, we assume that the frequency of both N2s are equal andmedial relative to the examples320

in Figure 6 above, allowing us to examine the effect of compound frequency holding N2 frequency321

constant. However, in our analysis of the actual data, both scaling factors are independently set322

on a per-item basis.323

/…/N1, /g…/N2,
/…ŋ…/High−freq.compound

*InteRnal-[g] Id-[nas]N2 Id-[nas]Compound

Weight: 2 1 1 H p
e. […g …] 1 .7 2.7 .09
f. […ŋ …] .5 .5 .91

/…/N1, /g…/N2,
/…ŋ…/Low−freq.compound

*InteRnal-[g] Id-[nas]N2 Id-[nas]Compound

Weight: 2 1 1 H p
g. […g …] 1 .3 2.3 .14
h. […ŋ …] .5 .5 .86

Figure 7: Schematic application of the Voting model of Base Competition to the formation of an
existing compound in the wug-test.

Here we see that the scaling of the compound again depends on frequency, but because of the324
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assumption we made about the listed form of the compound—specifically, that phonologically325

well-formed words are preferentially the target of lexicalization (Albright, 2008; Martin, 2007)—326

we find that the faithfulness to the compound’s UR penalizes the candidate that does not exhibit327

nasalization and violates markedness.328

Finally, we lay out the case where the competition between candidates is driven primarily by329

faithfulness. Above, where markedness had a high weight, the candidate that satisfied marked-330

ness had a higher probability than the one which violated it, and the effects of the faithfulness331

constraints were on the probability of the minority candidate. In the scenario where marked-332

ness is low and the weights of the faithfulness constraints are dominant, the majority candidate333

is the one that satisfies faithfulness to the whole compound, and the presence of the N2 is the334

main reason that the unfaithful (but markedness-satisfying) candidate gets appreciable probabil-335

ity; this is a type of “analogical” effect where markedness has little role, as in Figure 8, in which336

the markedness constraint is assigned a very low weight (here, arbitrarily set as 0.1). Below, we337

will see that this scenario is most similar to the state of the VVN alternation.338

/…/N1, /g…/N2,
/…ŋ…/High−freq.compound

*InteRnal-[g] Id-[nas]N2 Id-[nas]Compound

Weight: 0.1 1 2 H p
i. […g …] 1 .7 1.5 .27
j. […ŋ …] .5 0.5 .73

/…/N1, /g…/N2,
/…ŋ…/Low−freq.compound

*InteRnal-[g] Id-[nas]N2 Id-[nas]Compound

Weight: 0.1 1 2 H p
k. […g …] 1 .3 0.7 .45
l. […ŋ …] .5 0.5 .55

Figure 8: Schematic application of the Voting model of Base Competition to the formation of
an existing compound in the wug-test, in a regime where faithfulness is strong and markedness
weak.

5 The model in action339

Moving on to the analysis itself, we fit amodel to the data from existing compounds andmonomor-340

phemes, assessing its fit in that setting as well as its generalization to data from novel compounds.341

We fit the MaxEnt models using the Solver() function in Microsoft Excel (Fylstra et al., 1998), and342

used a weakly informative Gaussian prior of Normal(0,10) on constraint weights, which has the343

effect of allowing weights to vary in response to values that best fit the data, while making ex-344

treme values (here, above twenty or so) less appealing. For more on priors on weights in MaxEnt345

15



phonological models, seeWilson (2006) andWhite (2017). All models fit in this paper are provided346

in the supplementary materials.347

5.1 Existing compounds348

We first applied the analysis sketched in section 4.5 to data from existing compounds. Recall that349

in these forms, compounds with higher-frequency N2s are more likely to resist nasalization than350

those with lower-frequency N2s, but that compound frequency itself also influences nasalization,351

with higher-frequency compounds favoring the surface-realization of their underlying [ŋ]. We352

model the counts of compounds produced having undergone nasalization or not.353

We also integrate the fact that the participants were included in the experiment on the ba-354

sis of exhibiting complementary distribution of [g] and [ŋ] in monomorphemes. Therefore, the355

model included the monomorphemes used in the dialect questionnaire to screen participants for356

inclusion in the experiment, including frequency-based scaling of their faithfulness violations.357

Since we assume lexicon optimization (i.e., non-alternating monomorphemes are restructured to358

be /ŋ/-ful), and the monomorphemes we surveyed are only a small subset of the lexicon that ex-359

hibits the complementary distribution of [g] and [ŋ] and so do not allow us to train phonotactic360

learning models that rely on implicit negative evidence (Hayes and Wilson, 2008), we cannot ac-361

curately assess the weight of *InteRnal-[g]. However, we can find a lower bound on its weight362

by constraining the sets of weights we consider to those that maximize the likelihood of the com-363

pound data, while simultaneously preserving allophony in monomorphemes (operationalized as364

having 95% or greater probability of faithful realization). The final model yielded weights listed365

in Table 9, and predictions plotted in Figure 10.366

The weights of the two faithfulness constraints were not significantly different from one an-367

other, as assessed via a likelihood ratio test: Δlog-likelihood = 1.3, p = 0.10; a similar conclusion368

was suggested by the near-zero difference in the sample-size corrected AIC of the two models:369

ΔAICc = 1.8. AICc differences greater than 10 are typically taken to indicate strong support for370

the model with the lower AICc value; for more on model-comparison in statistical models and371

phonological grammars, see Shih (2017) and Wilson and Obdeyn (2009). This result suggests that372

the attractive influence of both bases is critical in driving the alternation in attested forms; the373

zero weight of the markedness constraint *InteRnal-[g] indicates that in existing compounds,374

analogical faithfulness is doing all the work, despite the assumption in the literature that the375

alternation is markedness-driven. We will revisit the role of markedness below in section 6.2.376

We also compared the full model to one where the two faithfulness constraints were allowed377

to take on different values but were not scaled by frequency. As one might expect, since low- and378

high-frequency forms have the same violation profiles in the phonological grammar, a grammar379

without access to frequency information can only predict one rate of nasalization across all forms;380
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Constraint Weight
*InteRnal-[g] 0.0
Id-[nasal]-Compound 7.09
Id-[nasal]-N2 7.39

Figure 9: Best-fitting weights for the
experimental data, existing and novel
compounds combined, that preserves
the allophony in monomorphemes.

Figure 10: Predicted (vertical axis) vs. observed (horizontal
axis) rates of nasalization for categories existing (green)
and novel (purple) compounds under the combined model
(weights in Table 9).

this model fits the data dramatically less well (Δlog-likelihood= 264.57, p < .001 with one degree381

of freedom, ΔAICc = 526.50).382

Finally, we evaluate the absolute performance of the model by examining how well it fits383

the data it was trained on: although the two models have different internal structures, we can384

ask whether the theoretically-informed MaxEnt model here does as good a job in explaining the385

data patterns as the theory-neutral mixed effects logistic regression model reported by BKK.9 We386

do this using the measure of R2, which ranges from zero to one, and can be thought of as the387

proportion of the variation in the dependent variable (here, whether nasalization applies or not)388

explained by the collection of independent variables (the phonological and lexical characteristics389

of interest).390

We used the r2_bayes() function from the performance package (Lüdecke et al., 2021) to obtain391

the marginal R2 of the statistical model—that is, the amount of variance in the data explained392

by the fixed effects—and compared it to the R2 for the MaxEnt model.10 Since the statistical393

9The model specification in BKK was as follows: Nasalization ∼ 1 + LogN2Freq*N2Primed +
LogCompoundFreq + NasalFinalN1 + (1 + LogN2Freq*N2Primed + LogCompoundFreq
+ NasalFinalN1 | Speaker) + (1 + N2Primed | Compound); see BKK section 3.3 and 3.4.1
for details.

10We used marginal R2, which makes reference to fixed effects only, since the conditional R2 that takes into
account the variance explained by both fixed and random effects has no direct comparison in the MaxEnt model
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model is Bayesian, we obtain a median and 95% Credible Interval for our R2: 0.48 and [0.31, 0.56],394

respectively. This is lower, though still relatively comparable, to theMaxEnt models R2 of 0.63, for395

which we have only a point estimate. Although the two are relatively close, the point value for396

the marginal R2 of the MaxEnt model is outside the 95% Credible Interval of the statistical model;397

this comparison suggests that the theoretically-structured model out-performs the theory-blind398

statistical one. While we find this result to be encouraging, this conclusion is tentative, however—399

since the MaxEnt model does not capture variation at the level of the speaker, it may be that the400

non-hierarchical structure of themodel mismatches the structure in the data in a way that distorts401

the results, attributing to the population grammar variance that should more conservatively be402

attributed to speaker-level idiosyncrasies.403

5.2 Novel compounds404

We take advantage of the fact that we have data for both existing and novel forms to administer405

a more severe test of the model. We do this by asking how well the grammar that was fit to the406

existing items generalizes to the novel forms. We evaluate the probability of the two candidate407

outcomes in the novel forms using the learned weights reported in Figure 9, with the relevant408

frequency information for the N2s, and zero frequency for compounds (since they are novel). The409

fit to the data is shown in Figure 10, alongside the fit to the existing compounds.410

We found that the model of the existing forms generalizes to the novel forms quite poorly; the411

obvious problem is that while the range of attested proportions of nasalization range between 0412

and 0.79, themodel predicts outcomes only in the range of 0.002-0.39. This indicates that either the413

grammar that best fits the existing compounds is a poor estimate of the knowledge that speakers414

used when generalizing to novel compounds (due to incompatible weights, constraints, or both),415

or that the novel compound data is simply extremely variable. To check whether the mis-fit is due416

to incompatible constraint weights, we fit a model with the same constraints to the novel forms417

directly, without regard for data from monomorphemes or existing forms. This yields a shifted418

range of predicted proportions (0.29-0.70), but a only marginally lower R2 (0.11, compared to 0.12419

based on the grammar fit to only the existing forms), which indicates that the data are still poorly420

fit. Therefore, the unexpected finding about the faithfulness-driven nature of the alternation is421

not to blame for the poor generalization performance of the model.422

Next, we compare the fit of our theoretically-motivatedMaxEnt model to the purely statistical423

model fit by BKK11, and find that the R2 of our primary model when generalizing to the novel424

we fit. For more on the relationship between mixed effects models and hierarchical structures in linguistic data, see
Zymet (2019).

11Model specification: Nasalization ∼ 1 + LogN2Freq*N2Primed + (1 +
LogN2Freq*N2Primed | Speaker) + (1 + N2Primed | Compound); see BKK section 3.3
and 3.4.2 for details.
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compounds, 0.11, falls within the 95% Credible Interval of the median of that of the statistical425

model, 0.06 [0.00, 0.18]. The model also predicts a range of 0.07-0.64 in terms of proportion426

undergoing nasalization, which more closely matches the true data. While still low in absolute427

terms, it lessens the possibility that our theoretical commitments are what is limiting us in being428

able to account for the data well. Therefore, we suspect that the cause of the poor model fit may429

be that there is simply less signal in the novel compound data.430

6 Discussion431

This paper has proposed a model of variable voiced velar nasalization in Japanese, drawing on ex-432

perimental data published in Breiss et al. (to appear). Themodel integrates grammatical and func-433

tional determinants of variation, drawing on the Voting Bases framework of lexicon-grammar434

interaction, which was originally developed to model an entirely separate phonological phe-435

nomenon, Lexical Conservatism in English and Spanish (Breiss, 2024). Here, we address several436

major issues that the model raises, notably about whether the proposed system can be learned437

from the actual Japanese lexicon (section 6.1), about the unexpected (lack of) role markedness438

appears to play in driving the alternation (section 6.2), about the competence-performance dis-439

tinction (section 6.3), and about how the Voting Bases model’s mechanism for integrating usage440

frequency and formal grammar compares to other propositions in the literature (section 6.4). Fi-441

nally, we close the paper with a more general discussion about how we might understand the442

broader empirical landscape of frequency effects in phonological patterning in light of the pro-443

posal in this paper.444

6.1 Whence the weights? Evidence in the lexicon445

Having observed that there is robust frequency-conditioning of nasalization in both existing and446

novel compounds, we can ask what the source of this frequency-conditioning might be. A sen-447

sible null hypothesis would be that the relationship between frequency and resting activation is448

one that is automatic and not overtly learned. However, we find that the model performs signif-449

icantly better when allowed to set the weights of faithfulness constraints referencing different450

allomorphs to different weights. This result suggests that, setting aside the relationship between451

frequency and activation, the speakers must be able to attribute different amounts of influence452

to different faithfulness constraint violations depending on which base the violation is assessed453

against. Put another way, the learner needs to be able to figure out how analogically-driven454

her lexicon is. Here, we present a preliminary investigation of what kind of evidence might455

exist in the Japanese lexicon that could allow speakers to assign different weights to Id-[nasal]-456

Compound and Id-[nasal]-N2.457
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We fit a grammar with the constraints in section 4.3 and frequency-driven scaling of faithful-458

ness violations to the set of compounds in the corpus analyzed by Breiss et al. (2021b) that had459

a free N2. We found that the optimal weights of the grammar were zero for both *InteRnal-[g]460

and Id-[nasal]-Compound, and 1.08 for Id-[nasal]-N2. We had anticipated there being little to461

no weight assigned to the markedness constraint in this dataset for the same reasons discussed462

above in section 5, but we also found that instead of a tension between faithfulness to the com-463

pound itself and faithfulness to the N2, the grammar instead left it to the paradigm uniformity464

effect alone to perturb the otherwise at-chance distribution of variation (at chance because the465

weight of Id-[nasal]-Compound was at zero, indicating, all else equal, that the alternating and466

non-alternating candidates were equiprobable). This is qualitatively the same finding as for the467

novel compounds.468

We compared the model fit to the corpus data to one where the grammar was forced to assign469

the same weight to Id-[nasal]-Compound and Id-[nasal]-N2, and found that it was significantly470

out-performed by the model that allowed the grammar to allot differing weights to different471

faithfulness constraints to different bases (Δlog-likelihood = 45.3, p < .001 with one degree of472

freedom). We take this as tentative evidence that there is an empirical basis in the lexicon for473

assigning different degrees of faithfulness to different bases.474

6.2 On the role of markedness475

We began our discussion of voiced velar nasalization by reviewing various sources that have as-476

sumed that the alternation observed in monomorphemes is a byproduct of a word-level marked-477

ness constraint banning word-medial /g/. This is a typologically-common scenario, and is built478

quite deeply into the foundations of constraint-based models (cf. Prince and Smolensky (1993),479

and the more recent summary in Chong (2017)). Separating marked structures from their repair480

makes it possible to derive both alternations and phonotactic restrictions from a common source.481

This, in turn, helps resolve the “duplication problem” (Kenstowicz and Kisseberth, 1977).482

However, the weight of evidence drawn from BKK’s data to this point suggest that rather483

than being driven by markedness, the VVN may instead by driven by competing faithfulness484

pressures. Evidence comes from the zero weight assigned to the markedness constraint *InteR-485

nal-[g] in the model fit to the existing data in section 5, as well as the zero weight assigned to486

the same constraint when fitting the data from the corpus, and also when trying to model the487

novel N2 data directly. In both these scenarios, however, faithfulness constraints to both /g/-ful488

and /ŋ/-ful allomorphs received nonzero weight, allowing the data to nevertheless be accounted489

for. Only in a model that assumes no scaling of faithfulness constraints by resting activation490

does markedness get weight, underscoring the importance of jointly modeling usage-based and491
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grammatical influences on probabilistic phonology (see 6.3 directly below).12492

Further, though more indirect, evidence that the weight of the markedness constraint may493

be in decline comes from the general pattern of change in many Japanese dialects, including494

the spoken style of the Tokyo dialect, which has almost entirely lost the allophony in favor of495

retaining /g/ as [g] in all contexts. This fact does not bear directly on the actual formal model we496

propose, but it suggests that something in the learning data–—be it phonetic, phonological, or497

otherwise—–is contributing to the loss of the allophony and the markedness constraint behind it,498

that is common to many dialects which is precipitating the loss of the allophony and its driving499

markedness constraint.500

Although this type of faithfulness-driven alternation is unexpected based on the literature501

reviewed in section 2, nevertheless the Voting Bases model predicts these outcomes should occur,502

as shown in Figure 8.503

6.3 Competence, performance, and formal modeling504

This paper has proposed a model of Japanese nasalization that integrates token frequency into the505

workings of the phonological grammar. Since the prospect of integrating a putatively performance-506

related factor like token frequency into a formal phonological model is not an uncontroversial507

one, below we directly address some possible criticisms of this approach. We certainly do not508

think that these are the last words on the topic, but we do feel that by explicitly discussing what509

we are doing and ourmotivations for doing it, we take a first step towards a clearer understanding510

of the stakes and consequences of the choices made in modeling information about usage jointly511

with the phonological grammar.512

One initial objection to formallymodeling the frequency-conditioned variation in nasalization513

might be that there is nothing competence-related to model here at all—the variation is solely514

driven by “performance” factors (Chomsky, 1965). We respond that this cannot be true of Japanese515

nasalization: the fact that only compounds whose N2 is morphologically free exhibit frequency-516

sensitive variation, despite the existence of bound morphemes with [g]- and [ŋ]-initial forms like517

[ga]/[ŋa] “fang”, as shown by the examples in (5), requires an explanation that makes reference518

to grammatical structures.519

Further afield, cases like Lexical Conservatism much more strongly blur the line between the520

contents of the lexicon and the phonological grammar and are well-modeled by a framework521

like Voting Bases. The fact that this paper demonstrates both paradigm uniformity and Lexical522

Conservatism emerge as special cases of the same theory speaks to the theoretical insight that523

can be gained by jointly modeling “performance-related” and “competence-related” influences on524

12In such a model, there is also weight given to a faithfulness constraint indexed to a /g/-ful UR for the compound,
following the intuition of a reviewer.
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the phonological grammar.525

Another objection is that by incorporating both resting activation (a psycholinguistic con-526

struct) and phonological markedness (a grammatical one), the model blurs the line between com-527

petence and performance, raising the question of what exactly the model is modeling. If so, this528

would be a legitimate concern. However, a virtue of the Voting Bases model is that lexical influ-529

ence on the grammar is clearly delimited: the model only allows the lexicon to scale the weights530

of faithfulness constraints to corresponding lexical representations. Manipulating the resting531

activation of a given UR has identifiable, localized influences on the computations of the phono-532

logical grammar, and instantiates a linking hypothesis consistent with a consensus view of the533

basic structure of the lexicon. This mechanism can be seen as one way of implementing the idea534

of “grammar dominance” put forth, for example, by Coetzee (2016) and Coetzee and Kawahara535

(2013). The “core” phonological grammar—weighted constraints which can assess violations of536

novel candidates—can be recovered by simply ignoring the influence of the lexicon on constraint537

violations, and can be studied in novel contexts like wug-tests, where there is no relevant lexical538

representation to bear on the grammar.539

A final objection that we consider is that the very act of jointly modeling usage frequency540

and the phonological grammar risks leading the analyst to think of fundamentally performance-541

related factors as in fact competence-related, thus undercutting the goal of researchers whose542

focus is only understanding linguistic competence. We contend that this is simply false, and in543

fact, the reverse is true: for a researcher who only cares about linguistic competence, modeling544

usage factors jointly with theories of competence is vital. When confronting data derived from545

language use (that is, modeling corpus data as in Breiss et al. (2021a), or experimental data where546

stimuli are existing morphemes of the language as in Breiss et al. (to appear)), a joint model547

will better expose the true influence of competence-related factors on the data under study, with548

the performance-related parts of the model accounting for the otherwise-distorting influence of549

these factors. Simply ignoring performance-related factors in a formal model makes the strong550

claim that they have no effect, an assumption which is untenable in the cases examined here,551

and, we suggest, is also false in many (if not all) types of linguistic data that speakers might have552

prior usage-based experience with (Arnon and Snider, 2010; Smith and Moore-Cantwell, 2017;553

Zymet, 2018; Morgan and Levy, 2016, 2023). Rather, an integrated approach that jointly models554

grammar and usage is essential to disentangle and distill and understanding of competence from555

its entanglement with performance factors, if this is the goal of the analysis.556

The foregoing discussion, as well as comments from reviewers, raise the question of whether557

the analysis proposed here still cleaves to the generative roots of the constraint-based model for-558

malism that it adopts (though cf. Smolensky (1986a); Legendre et al. (1990); Smolensky (1986b) on559

the shared roots of OptimalityTheory, Harmonic Grammar, MaxEnt, and connectionism (Rumel-560
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hart et al., 1986)). This, in our opinion, is somewhat a matter of perspective, and is in any case561

rather beside the point. Depending on how one defines “generative” or “functionalist”, our model562

may be seen as aligned with either point of view — since it, too, aims to model grammar, its use,563

and acquisition at a certain necessary level of abstraction. What we hope this exercise demon-564

strates, rather, is that by reifying our theories about what the data-generating process is in a565

computational model, we can confront complex data with many interlocking or moving parts,566

and recover transportable analytical insights that we are confident are common desiderata shared567

by many strands of linguistic analysis. We also note that we are far from the first to pursue this568

approach — for very closely-related discussions of what it means for a linguistic theory to model569

frequency, see Coetzee and Kawahara (2013); Coetzee (2016), among others.570

6.4 Comparison with other models571

The Voting Bases model is one of several approaches in the literature that propose to model the572

interaction of usage frequency and phonological grammar. In particular, it is similar to the meth-573

ods proposed in Coetzee (2016) and Coetzee and Kawahara (2013) which directly scale the weight574

of faithfulness constraints by the frequency of the form they make reference to, and that of Baird575

(2021) where a simulated perception-production loop comes to the same result via online learn-576

ing. This family of approaches involves lowering the weight of faithfulness constraints to high-577

frequency forms relative to lower-frequency formswhich enables them tomodel data like coronal578

stop deletion in English (Coetzee and Kawahara, 2013), where higher-frequencymonomorphemes579

(like just) tend to get producedmore oftenwith a deleted coronal stop than phonologically-similar580

words (like jest). Common to these models is that they assume that the underlying form is /t/-ful,581

and thus the task of their model must relate higher frequency to therefore have lower constraint582

weights for it.583

A weakness of these models is that, with the possible exception of Baird (2021), the direction-584

ality between frequency and constraint weight is arbitrary—the primary goal set in these studies585

was to fit the data, which is better than the alternative which does not model the effects of lexi-586

cal frequencies at all, but they suffered somewhat for the lack of clear functional grounding the587

relation.588

By contrast, the frequency-faithfulness relation that Voting Basesmodel adopts runs in the op-589

posite direction—more frequent forms exact a greater penalty for unfaithful realizations relative590

to less frequent forms; constraint violations are less severe for low-frequency vs. high-frequency591

forms. This allows the model to fit a similar range of data, but with a linking hypothesis that592

is explicitly rooted in resting activation, a construct that is externally justified by a large body593

of work in psycholinguistics, as reviewed in Breiss (2021, 2024). Lexical items with higher rest-594

ing activation are more insistent on faithfulness to themselves, corresponding to their increased595
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salience in the language processing system. The main contribution of the Voting Bases model596

in modeling this phenomenon is that the influence of the lexicon on the grammar should be, in597

principle, derivable without reference to any facts about the experiment in question; given some598

independently-established computationally-implemented model of lexical dynamics that repre-599

sents a scalar quantity of resting activation (or similar construct), the strong prediction of the600

Voting Bases model is that that quantity should be able to be a fully adequate scaling factor for601

faithfulness constraint violations. The specific mechanism that is used in this paper—scaling the602

weights by the sigmoidal transformation of the resting activation—is used since it represents,603

to us, a reasonable first stab, but the linking function may need to be revised in light of future604

findings.605

In summary, we suggest that the Voting Bases model, because of its functional grounding606

of frequency effects in externally-motivated psycholinguistic phenomena, is on firmer footing607

than theories that have alternative linking functions between frequency and grammar, which are608

arguably arbitrary.609

6.5 Towards a unified picture of token frequency in phonology610

In this section, we broaden our view of token frequency effects in phonology, and discuss how611

considering the varying functional roles of frequency can reconcile some seemingly-contradictory612

bodies of evidence (cf. also Bybee, 2003).613

First, there is evidence that higher token-frequency leads to more markedness-reducing al-614

ternations. Coetzee and Kawahara (2013) found that higher-frequency lexical items were more615

likely to undergo phonological processes of simplification and (markedness-)reduction: high-616

frequency English words like jus(t) underwent an optional process of coronal stop deletion at a617

higher rate than low-frequency words like jes(t), and high-frequency Japanese words like [baggu]618

“bag” underwent geminate devoicing more often than low-frequency words like [budda] “Bud-619

dha” (Kawahara and Sano, 2013). Zuraw (2007) examines frequency-conditioned application of620

markedness-reducing phonological processes in a corpus of written Tagalog, and likewise finds621

higher rates of repair within higher-frequency units (words, clitic groups, etc), subject to the622

markedness principles of the language.623

On the other hand, there is also evidence to show that higher-frequency forms are more624

likely to be exceptional, and thus marked with regard to the overall properties of the grammar.625

Smith and Moore-Cantwell (2017) found that higher-frequency comparative constructions are626

more likely to flout grammar-wide trends driven by markedness. In a similar vein, Anttila (2006)627

and Mayer (2021) found that higher-frequency morphologically-complex forms were more likely628

to behave opaquely with respect to grammar-wide phonological processes.629

We can compare these effects to the ones observed in Breiss et al. (2021b) and Breiss et al.630
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(to appear): higher-frequency N2s act as stronger attractors, yielding more faithfulness to their631

preserved surface [g] resulting in lower rates of nasalization, whereas higher compound fre-632

quency as a whole yielded higher rates of nasalization. Thus it seems that for compounds, higher633

frequency is correlated with more phonological-process application and markedness-reduction;634

this is broadly in line with the findings of Coetzee and Kawahara (2013) where higher-frequency635

words undergo more phonological alternations. However, we found that at the same time, in636

compounds with free N2s, higher free N2 frequency is related to less process application, with637

higher-frequency supporting the retention of a marked structure (word-medial [g]).638

We suggest we can resolve this tension by distinguishing between the processes that token639

frequency can impact: one is whether to set up an independent lexical representation for a surface640

allomorph, and the other is influencing the strength of that representation in the lexicon of the641

speaker.642

If a form is exceptional and high-frequency, it may be more economical for a speaker to pay a643

one-time “cost” of encoding the exception as a listed form that is not derived by the grammar, thus644

relieving the phonology of the difficulty of having to generate the exceptional or idiosyncratic645

form on each of the many frequent occasions of use (cf. Adaptor Grammars (Johnson et al., 2007,646

et seq.) or Fragment Grammars (O’Donnell, 2015) which offer computationally-explicit imple-647

mentations of this general idea). For lower-frequency exceptional forms, the likelihood of listing648

is less since the price trades off less favorably with the amount of times it is used; thus lower-649

frequency forms are more susceptible to change and regularization to the dominant grammatical650

trends over time compared to higher-frequency forms.651

Another aspect of this trade-off is the emergence of LexiconOptimization (Prince and Smolen-652

sky, 1993; Sanders, 2003, 2006); even if a form is not particularly exceptionful, if a UR almost653

always surfaces with a phonological process applied to it, with sufficient frequency it becomes654

less costly to just store the form with phonological process applied—that is, create a separate655

allomorph that is specific to the environment that would trigger the phonological rule. This, sim-656

ilarly, relieves the grammar of the job of having to repair the form every time. Thus, we find657

Lexicon Optimization targeting forms like jus(t) over forms like jest, making these forms restruc-658

tured to automatically have the phonological alternation applied, thus giving the appearance of659

having undergone a markedness-improving repair in the grammar, but actually the frequency of660

the form has resulted in restructuring to the lexicon (see Breiss and Wilson (2020) for an initial661

attempt at a computational model of the phonological grammar and lexicon that exhibits this662

property).663

As reviewed above, lexical frequency also influences the resting activation of a lexical item664

once it is listed in the lexicon. In the Voting Bases model, higher resting activation leads to665

the listed form exerting a stronger pull on the surface realization of a related form; where this666
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pressure goes against the broader principle of markedness in the grammar, as in cases of paradigm667

uniformity, we find that marked structures with high-frequency output-bases are preserved; in668

cases where the listed form coincides with the output of the markedness-reducing process, as669

in many cases of Lexical Conservatism (Steriade, 1997; Steriade and Stanton, 2020; Breiss, 2021),670

then the higher-frequency form promotes an unmarked surface form.671

Recent work by Jarosz et al. (2024) has laid out a class of models which exhibit characteristics672

that align favorably with the dynamics of frequency laid out here, suggesting that an integrated,673

implemented model that can jointly account for the variety of frequency effects reviewed in this674

section is perhaps quite close at hand. Future work may profitably explore how well these mod-675

els can provide converging evidence from computational learning simulations to support the676

psycholinguistic, experimental, and diachronic evidence for the contents of the lexicon that the677

Voting Bases theory relies on. In sum, the broader landscape of token frequency in phonology678

is compatible with the functional grounding given to frequency under the Voting Base model,679

though much empirical and formal work remains to be done to further support the predictions of680

the framework more broadly as a candidate for a general theory of the influence of the dynamic681

lexicon on the probabilistic grammar.682
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