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A B S T R A C T   

We used Bayesian modeling to aggregate experiments investigating infants' sensitivity to native language pho
notactics. Our findings were based on data from 83 experiments on about 2000 infants learning 8 languages, 
tested using 4 different methods. Our results showed that, unlike with artificial languages, infants do exhibit 
sensitivity to native language phonotactic patterns in a lab setting. However, the exact developmental trajectory 
depends on the phonotactic pattern being tested. Before 8 months, infants tuned into non-local dependencies 
between vowels: specifically, vowel harmony. Between 8- and 10-months, infants demonstrated a consistent 
sensitivity to both local dependencies and non-local consonant dependencies. Sensitivity to non-local vowel 
dependencies that are not based on harmony emerged only after 10-months. These findings provide a benchmark 
for future experimental and computational research on the acquisition of phonotactics.   

1. Introduction 

From research over the last several decades, we know that infants 
become sensitive to their native language speech sound categories 
during the first year of life. Within that year, infants tune into the set of 
sounds that are contrastive in any given language that they are acquiring 
as well as the properties of individual speech sound categories. In this 
paper, we present a meta-analysis of cross-linguistic research on when 
and what infants know about the phonotactics — the position, 
sequencing, and frequency of sounds — in their native language. 

Infants' sensitivity to phonotactics is typically indexed by a differ
ential response to more versus less frequent sounds or sequences of their 
native language. The differential behavioral response can include, 
depending on the age of the infants and the experimental paradigm, 
listening or looking preference, successful discrimination, segmentation, 
and even word learning. Because infants have exposure to their native 
language in their daily lives, they are expected to preferentially attend 
to, segment, and learn words with the more frequent patterns if they are 
sensitive to native language phonotactics. 

The now-classic finding by Jusczyk, Luce, and Charles-Luce (1994) 
set the stage for the research program on the acquisition of phonotactics. 
Jusczyk et al., presented lists of nonce monosyllables that had high or 

low probability sound patterns from English to English-learning 6- and 
9-month-olds. Infants were tested using the Headturn Preference Pro
cedure. English-learning 9- but not 6-month-olds listened significantly 
longer to the high probability lists, leading Jusczyk et al., to conclude 
that infants are tuning into the phonotactic patterns of their native 
language between 6 and 9 months. This developmental timeline con
tinues to be the established wisdom in the literature. 

Following Jusczyk et al., the bulk of the research on infants' sensi
tivity to phonotactics has been focused on 9-month-olds. Specifically, we 
now have converging evidence that English-learning 9-month-olds have 
knowledge of sequencing restrictions on consonant clusters (CC) in tasks 
measuring preference (e.g., Archer & Curtin, 2011; Mattys, Jusczyk, 
Luce, & Morgan, 1999) and word segmentation (e.g., Archer & Curtin, 
2016; Mattys & Jusczyk, 2001). Similar significant listening preferences 
for high probability CC sequences of their native language have also 
been reported for 9-month-olds learning Dutch (Friederici & Wessels, 
1993) and Catalan (Sebastián-Gallés & Bosch, 2002). 

Older infants also demonstrate knowledge of native language pho
notactics. English-learning infants continue to favor high probability CC 
sequences when learning words in the second year of life (e.g., Graf 
Estes, 2014; Graf Estes, Edwards, & Saffran, 2011; MacKenzie, Curtin, & 
Graham, 2012); Japanese-learning 12- and 18-month-olds successfully 
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discriminate high, but not low probability CC(V) sequences (Kajikawa, 
Fais, Mugitani, Werker, & Amano, 2006; Mugitani, Fais, Kajikawa, 
Werker, & Amano, 2007); French-learning 10-month-olds demonstrate 
knowledge of non-adjacent dependencies between consonants in tasks 
measuring preference (e.g., Gonzalez-Gomez & Nazzi, 2012a; Nazzi, 
Bertoncini, & Bijeljac-Babic, 2009), segmentation (Gonzalez-Gomez & 
Nazzi, 2013), and word learning (Gonzalez-Gomez, Poltrock, & Nazzi, 
2013). Hebrew- (Segal, Keren-Portnoy, & Vihman, 2015) and Turkish- 
learning 10-month-olds, too, demonstrate sensitivity to language- 
specific restrictions on non-adjacent dependencies, but between 
vowels (Atlan, Kaya, & Hohenberger, 2016; Hohenberger, Altan, Kaya, 
Köksal-Tuncer, & Avcu, 2016; Hohenberger, Kaya, & Altan, 2017). 
These findings with a variety of phonotactic patterns are consistent with 
an account where infants are tuning into native language phonotactics 
by about 9 months, though even the older infants' behavior might not be 
adult-like. 

The results from research on infants younger than 9-months, how
ever, are both more limited and more equivocal. Although English- 
learning 6-month-olds fail to demonstrate sensitivity to sequencing re
strictions on CC clusters in a word segmentation task (Mattys et al., 
1999), they do so in a preference task (Archer & Curtin, 2011). Yet, even 
in preference tasks, Dutch-learning 4.5- and 6-month-olds fail to favor 
high probability CC clusters (Friederici & Wessels, 1993). Research on 
French-learning infants also shows a discrepancy in the performance of 
younger infants depending on the specific phonotactic pattern being 
tested: French-learning 7-month-olds prefer listening to sequences of 
more frequent segments, but not sequences with more frequent non- 
adjacent consonant sequences (Gonzalez-Gomez & Nazzi, 2012a). Like 
the French-learning infants, Japanese-learning 7-month-olds also fail to 
show a preference for sequences with more frequent non-adjacent con
sonant sequences (Gonzalez-Gomez, Hayashi, Tsuji, Mazuka, & Nazzi, 
2014). However, Turkish-learning 6-month-olds do prefer more 
frequent non-adjacent sequences involving vowels (Atlan et al., 2016; 
Hohenberger et al., 2016; Van Kampen, Parmaksiz, Van De Vijver, & 
Hohle, 2008; see also Hohenberger et al., 2017 for an asymmetry in 
discrimination consistent with a preference for harmonic sequences). 

To summarize, there is converging evidence that infants learning 
many different languages are sensitive to phonotactic restrictions at 9- 
months, as are older infants. The most variability, however, is in the 
performance of younger infants: in infants younger than 9-months, 
whether or not studies demonstrate sensitivity to phonotactics seems 
to depend on the task as well as the specific pattern being tested in 
addition to the infants' native language. 

In the first part of the meta-analysis reported in this paper, we 
addressed whether infants are sensitive to native language phonotactics. 
This is a non-trivial question considering the climate of concern about 
replicability, underpowered studies in infant research (Oakes, 2017), as 
well as a recent meta-analytic report calling into question that infants 
can learn phonotactics just from short-term exposure to artificial lan
guages in the lab (Cristia, 2018). In the second part, we evaluated the 
extent to which infants' sensitivity to phonotactics is moderated by age, 
testing methods, and phonotactic dependency type. 

To establish a developmental timeline, we need to be sure at what 
ages infants fail and succeed on a given task. However, as Bergmann 
et al. (2018) review, the interpretation of nonsignificant findings is 
fraught: researchers cannot be sure whether any particular null finding 
is a true lack of ability, noise, or an error because of an insensitive 
experimental design or small sample size. Throughout the paper, we 
used Bayesian models to integrate evidence from data (here, effect sizes 
from comparisons of more and less frequent items in a paper) with prior 
expectations, to quantify the strength of evidence for likely values of 
parameters of interest. This approach is particularly well-suited to meta- 
analysis because it allows the opportunity to quantify the contribution of 
individual studies to our estimate about the object of inference — our 
certainty about infants' degree of sensitivity to phonotactic patterns — 
rather than having to rely on a binary accept/reject criterion evaluating 

a null hypothesis of an effect size of zero (Kruschke, 2014). Bayesian 
inference also allows for principled synthesis of continuous levels of 
evidence provided by “significant” as well as “non-significant” findings 
in the summarized literature (Nicenboim, Roettger, & Vasishth, 2018). 
Using Bayesian modeling in this meta-analysis, we focused on estab
lishing the age at which infants tune into specific phonotactic patterns in 
their native language. 

2. Methods 

2.1. Paper identification and selection 

The term ‘paper’ is used here as a cover term for conference pro
ceedings, published journal articles, book chapters, and unpublished 
reports. The initial cohort was compiled by identifying papers known to 
the authors (26 papers) and by systematic searches of databases and 
reference lists (195 papers). 

The 221 paper titles and abstracts were then screened. After 
removing duplicates (38 papers), we excluded papers which did not 
meet the following broad selection criteria. First, in order to be included 
in the meta-analysis, a paper needed to examine learning of segmental 
phonotactics in infants under the age of 2 years in their native language. 
Second, only papers using behavioral measures such as the Headturn 
Preference Procedure, central fixation, and preferential looking para
digm were included. We excluded neurophysiological investigations 
from this meta-analysis because they typically involve multiple corre
lated measures – either across electrodes or areas in the brain, and it is 
not clear which of the derived measures from these experiments are 
most analogous to the dependent variables in behavioral experiments. 
Third, we did not include papers which tested learning of artificial or 
modified languages. Because discrimination experiments habituate in
fants in the lab to one or other stimuli with a view to affecting behavioral 
outcomes, we treated such experiments as involving artificial languages 
and excluded them (5 papers). 

After the initial screening, we excluded papers which tested adult 
phonotactic learning (25), those that were not about the learning of 
phonotactics (31), involved prosodic/suprasegmental features (14), 
used artificial languages (8), were computational simulations (5), were 
studies of corpora (2), tested children older than two years (3), were 
review articles which did not present new experimental data (12), used 
methodologies which did not fit our criteria (7), and for which we were 
unable to obtain the text of the paper (1). This left us with 70 papers. 

We examined the full text of the remaining 70 papers to determine 
their eligibility for the meta-analysis. This eligibility assessment resulted 
in the additional exclusion of papers for not being about phonotactics 
(29), testing adults (2), testing phonotactic patterns unrelated to infants' 
native language (1), testing only sequences which were illegal in the 
infants' native language (1), testing infants over the age of two (6), 
lacking critical information needed for the meta-analysis (2), and for 
providing only a subset of data included in another paper (1), or not 
providing any data (2). After screening, a total of 26 papers were eligible 
for the meta-analysis (see PRISMA flowchart in supplementary material 
on the OSF page for this project https://osf.io/ecpjz/?view_only=1c4 
5fcf9a72848b5bb6dd98552c8bd85). 

2.1.1. Data entry 
Papers in the final cohort were entered into the analysis. Some pa

pers included multiple experiments or conditions, in which case each 
comparison constituted a record of an experiment for data entry, if it 
provided an independent effect size estimate. For example, Van Kampen 
et al. (2008) tested infants on two sets of stimuli where one set had 
initial stress and the other had final; because they compared high and 
low frequency items within each set, this paper contributed two entries 
to our analysis. 

Each record was coded for a number of dimensions following pre
vious meta-analyses (Bergmann & Cristia, 2016; Cristia, 2018; for a full 
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list and explanation of coded variables see Bergmann et al., 2018). The 
relevant dimensions for the present analysis were, (1) background in
formation on the paper, including year of publication, and whether the 
publication was peer reviewed; (2) the number of infants recruited and 
the number of infants excluded; (3) infants' native language; (4) infants' 
mean age and age range in days; (5) whether a trial type was more or less 
frequent in the infant's native language; and (6) the mean and standard 
deviation of looking times for each trial type. For 3 papers (4 experi
ments; Graf Estes, 2014; Graf Estes & Bowen, 2013; MacKenzie et al., 
2012) we derived a difference measure between looking times to same 
and switch trials for high probability and low probability conditions 
separately and used those as looking time measures for high and low 
frequency trial types. We additionally coded for moderator variables 
describing the type of phonotactic pattern tested: (1) whether the tested 
patterns occurred at word edges as compared to word medially, and (2) 
whether low frequency items in a study obeyed sonority sequencing 
principles. 

The final dataset had results from 1866 infants learning 8 languages, 
tested using 4 methods in 83 experiments from 26 studies. The distri
bution of age and native language of the infant in the final sample are 
presented in Fig. 1. 

2.2. Derived variables 

2.2.1. Effect size 
In order to compare the strength of evidence across studies, we 

converted infants' response to the high and low frequency pattern within 
each study to a standardized effect size. We used the esc_mean_sd() 
function from the esc package to calculate effect sizes (Lüdecke, 2019). 
Effect size is commonly defined as the difference between two sample 
means, divided by the pooled standard deviation of the two means 
(Cohen's d). However, in this meta-analysis, instead of using Cohen's d, 
we used Hedges' g because it additionally scales the calculation based on 
the sample size of each study; as a result, studies with more participants 
have a proportionally greater impact on the meta-analytic estimate 
(Shadish & Haddock, 2009). Outside of this, values of Cohen's d and 
Hedges' g are interpreted similarly. Hedge's g was the dependent variable 
throughout this paper. 

If papers had multiple comparisons involving more and less frequent 
sequences, we calculated the effect size for each pairwise comparison 
independently. In cases where the raw data were made available to us, 
we carried out paired t-tests and used this measure instead of the re
ported omnibus comparison statistic reported in the paper. In these 
cases, we were also able to incorporate the within-individual correlation 
between trials into our calculation of effect size, increasing the precision 
of our estimates. 

2.2.2. Standard deviation 
A few studies did not report standard deviations (or standard errors) 

in the text or in figures, but did report means, n's, and t-statistics. In such 
cases, we derived the standard deviation by leveraging the fact that the t- 
statistic is itself derived from the standard deviation of the difference 
between means, and that the standard deviation of a condition is equal 
to the standard deviation of the difference between conditions, if the 
conditions have the same variance. We confirmed this using a two-tailed 
paired t-test conducted on the standard deviations that were reported in 
the publications (t(108) = 1, p = 0.319); we included the derived 
standard deviations in our models. 

2.3. Analyses 

All statistical analyses reported here were carried out in the R pro
gramming environment (R Core Team, 2020), using the brms package 
(Bürkner, 2017, 2018; v. 2.14.4) to fit Bayesian (hierarchical) models to 
the data. All models included a random intercept of experimental 
comparison nested within paper to account for the residual variance 
arising from possibly non-uniform influence of the specific language, 
testing method, research team, and population being studied on exper
imental outcomes. Further, all models reported here took into account 
the uncertainty in the effect size in the original paper: instead of 
modeling effect size directly, we modeled the effect size drawn from a 
Normal distribution parameterized by the mean and standard error of 
Hedge's g, as described in Section 2.1.1. We report the median value of 
the posterior distribution for each parameter of interest, along with 
values denoting the upper and lower limits of an interval that contains 
the central 95% of values for the parameter (the 95% Credible Interval). 

Fig. 1. Distribution of the number of infants in the meta-analysis based on age (for a given experiment, top), and based on native language (bottom).  
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We chose to report the median value of the posterior distribution 
because if the distribution is symmetrical, it is identical to the mean; 
however, if the distribution is asymmetrical, then the median better 
characterizes the distribution. From this statistic we can make inferences 
about the most likely values of the parameter (those that are closer to the 
median value), and those which are less likely (those closer to the tails of 
the distribution). For intercepts and coefficients we also report the 
posterior probability of a positive effect, which ranges between 0 and 1; 
this statistic is obtained by simply examining the proportion of credible 
values which lie above zero, and represents the probability of some 
nonzero positive effect, regardless of magnitude. 

All models were fit using a No U-Turn Sampler with an adapt_delta 
setting of 0.99 to draw 10,000 samples in each of four Markov chains 
from the posterior distribution over parameter values, conditioned on 
the observed data and our priors. In order to ensure adequate inde
pendence from the starting values of the Markov chains, we discarded 
the first 1000 samples from each chain, retaining the latter 90% of 
samples for inference. 

Since continuous variables were centered and scaled, we used a 
Normal(μ = 1,σ = 0.5) prior on the intercept for the primary analysis 
reported in Part I; moderator analyses were fit so as to exclude an 
intercept term. For the Bayesian implementation of Egger's test reported 
in Section 3.2.1, we used a Normal(0,2) prior, since we didn't have 
strong assumptions about the skewness of the funnel plot in question. 
We used a Normal(0,0.5) prior on coefficient parameters throughout, 
and a Normal(0,1) prior on standard deviations. These priors were 
chosen because we had no cause to believe we would find large effect 
sizes (i.e., |g| > 1), but were rather certain that an effect would be found, 
given that all typically-developing children must learn phonotactics 
eventually. All R̂ values were within 0.01 points of 1, indicating that the 
Markov chains explored the posterior in an unbiased manner (i.e., the 
model converged). Posterior samples from the models described here 
can be obtained from the OSF page for this project. A sensitivity analysis 
showed little variation in posterior values in the primary analysis for a 
range of prior expectations including Normal(0,10) and Normal(1,1); 
further data is available on the OSF page. 

3. Results and discussion 

3.1. Part I: Are infants sensitive to native language phonotactics? 

In this section, we focused on whether infants are sensitive to the 
phonotactics of their native language. Sensitivity to phonotactics during 
development has been evaluated in one of two ways. In one approach, 
infants are tested on patterns from their native language to which they 
have had long-term exposure commensurate with their age. Alterna
tively, there are also experiments on what infants may learn from short- 
term exposure to an artificial language created in the lab. While the 
greater control and flexibility in designing artificial languages promises 
the potential to inform about plausible mechanisms available to infants 
during acquisition, a meta-analysis by Cristia (2018) summarizing this 
literature found that the overall effect size for such studies was not 
significantly different from zero. That is, Cristia found no evidence that 
infants can learn phonotactic patterns only from short-term exposure to 
an artificial language in the lab. 

The analyses presented in Part I were targeted towards comparing 
infants' sensitivity to phonotactic patterns learned from long-term native 
language exposure vs. short-term lab experiments. First, we report re
sults from a Bayesian model evaluating the effect size of experiments 
where infants were tested on native language patterns to which they had 
long-term exposure. Then, we re-analyzed the Cristia (2018) dataset 
from artificial language experiments also using Bayesian models for an 
integrative analysis in which we fitted a combined model to both 
datasets, with Language (artificial vs. natural) as a fixed effect. If infants 
can learn phonotactics from native language input within the first two 
years, we expect a positive effect size with natural language stimuli. This 

finding would be additionally strengthened in case of a significant effect 
of Language in the joint analysis of data reported here and in Cristia 
(2018). 

3.1.1. Infants do learn native language phonotactics 
To address whether infants are sensitive to native language phono

tactics we calculated the aggregate meta-analytic effect size across all 
experiments. To this end, we fit a random-effects-only meta-analytic 
measurement-error model. In this model, the effect sizes for individual 
comparisons in each experiment can be thought of as standing in for the 
“population” of individuals in a more traditional random-effects 
experimental design. The model also incorporates the uncertainty in 
each study's estimate of the true effect size by modeling the point- 
estimate as sampled from a normal distribution parameterized by the 
standard error of the effect size for the study in question. This allowed us 
to retain the uncertainty in the estimates from each of the experiments 
included rather than assuming perfect accuracy of measurement, 
thereby reducing potentially overconfident estimates of our model. The 
intercept in this model is the statistical and scientific quantity of interest: 
it represents the population-level estimate of the effect size associated 
with infant sensitivity to native language phonotactics as assessed by all 
the literature we gathered. 

The meta-analytic effect size across all experiments was 0.38, with 
95% Credible Interval (CrI) = [0.20, 0.57], p(β > 0) = 1.00. That is, 
based on the results from all experiments included here, we can be 100% 
certain that the effect size is positive, and 95% confident that the effect 
size is between 0.20 and 0.57. Thus, aggregating across age, pattern, 
language, and experimental method, infants showed a medium-small, 
consistent preference for more frequent sequences from their native 
language. Fig. 2 displays the meta-analytic effect size (bottom), along 
with the shrunken estimates for the median and 95% CrI of the effect 
size of interest from each of the studies included in the meta-analysis. 

3.1.2. Evidence of (slight) bias in the literature 
If there is preferential submission or publication of positive results, 

the meta-analytic effect size reported here could be potentially over
inflated. We evaluated bias in two ways. 

3.1.3. Some evidence for selective submission or publication practices 
First, to evaluate the possibility of preferential submission of positive 

results, we used a funnel plot (Fig. 3) to plot Hedges' g as a function of 1/ 
Standard Error. Funnel plots are useful for detecting publication bias 
resulting from selective recruitment practices or small-study effects on 
reporting (Sterne & Egger, 2001; Sterne & Harbord, 2004). Researchers 
may be disproportionately motivated to gather larger samples when an 
effect in an intermediate analysis is near-significant and in line with 
their prior expectations, compared to when it is not significant, or even 
nearing significance in the opposite direction. This practice can be 
deduced by gaps in the funnel plot, particularly towards the base of the 
vertical axis when the power is low. Further, lateral asymmetries in the 
funnel plot can indicate that researchers were unsuccessful at publishing 
studies that failed to confirm their prior expectations. Because estimates 
from statistically-significant but low-power studies are guaranteed to be 
overestimates of the true effect size (Vasishth, Mertzen, Jäger, & Gel
man, 2018), these gaps are more likely near the base of the funnel near 
zero on the horizontal axis, since researchers are biased against pub
lishing non-significant findings. In the funnel plot in Fig. 3, the apparent 
vertical displacement of the points upwards is driven entirely by one 
study with a very small sample size but a very large effect size. 

While the bulk of the studies were clustered rather symmetrically 
around the meta-analytic effect size, the outliers were asymmetrically 
distributed; notably, low-powered studies (low on the vertical axis) 
tended to skew more to the right on the horizontal axis than to the left, 
suggesting a possible scenario where studies with comparably small 
sample sizes were conducted but not published because of non- 
significant (or indeed, perhaps opposite) effects. We confirmed the 
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Fig. 2. Median and 95% Credible Interval for the shrunken effect size for each experiment. The vertical dashed red line marks an effect size of zero, while the grey 
vertical lines mark the meta-analytic median effect size plus upper and lower 95% CrIs. (For interpretation of the references to colour in this figure legend, the reader 
is referred to the web version of this article.) 
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rightward skew of the overall distribution with a Bayesian imple
mentation of Egger's test (Egger, Smith, Schneider, & Minder, 1997), 
which regresses the ratio of each study's effect size and its standard error 
against its inverse standard error. If the estimate for the intercept in this 
model excludes zero, we can conclude that there is asymmetry in the 
funnel plot in the direction of the coefficient of the intercept. The results 
of the test did indicate that there was a slight rightward-skewing 
asymmetry (β = 3.30, 95% CrI [0.17, 6.43], p(|β > 0) = 0.98). This 
suggests that the published literature may be biased in favor of effects 
which confirmed a priori hypotheses. 

3.1.4. No evidence of p-hacking 
We also carried out a p-curve analysis on the collected studies. This is 

used to evaluate whether researchers have exploited their degrees of 
freedom (including or excluding specific participants as outliers, trying 
different statistical tests, different transformations of the dependent 
variable, etc.) to “p-hack” their results. 

A p-curve analysis examines the distribution of p-values below 0.05 
to determine whether they are (a) more likely to have arisen from a 
series of studies testing a robust underlying effect (a right-skewed p- 
curve), (b) indistinguishable from those which would arise under a null 
underlying effect (flat p-curve), or (c) the likely result of extensive p- 
hacking, and therefore of questionable evidential value (left-skewed p- 
curve). Using the pcurve() function from the dmetar package (Harrer, 
Cuijpers, Furukawa, & Ebert, 2019), we found significant evidence of 
right-skewness in the distribution of p-values (p < 0.001). The p-curve 
analysis itself had a power of 0.84 (confidence interval 0.71–0.92), 
indicating that there were enough studies included in the meta-analysis 
to provide a well-powered robust estimate of the skewness of the p-value 
distribution. This confirms the absence of p-hacking in the literature 
reported. Note that because the test carried out by the pcurve() function 
was not a Bayesian one, we cannot interpret these intervals as credible 
intervals, as has been the general practice in this paper. Because there 
was no evidence for p-hacking and only a slight bias towards selective 
submission or publication practices, we can be confident regarding the 
estimates of effect size reported here. 

3.1.5. Comparison to Cristia's (2018) meta-analysis on artificial language 
learning experiments 

Next, we directly compared the meta-analytic review of the 83 ex
periments evaluated in Section 3.1 with the 34 experiments summarized 
in Cristia (2018) on teaching infants phonotactics in the laboratory 
through artificial languages. The results from a Bayesian re-analysis of 

the artificial language learning experiments are provided in Appendix 1. 
The effect sizes for natural vs. artificial languages are summarized in 
Fig. 4. 

The difference between the experiments using artificial vs. natural 
language stimuli was credible. Consistent with the previous analyses, we 
found that the effect size for artificial languages was very likely near- 
zero (β = 0.02, 95% CrI = [− 0.23, 0.28], p(β > 0) = 0.56), and the ef
fect size for natural languages was positive, and much larger (β = 0.35, 
95% CrI = [0.18, 0.51], p(β > 0) = 1.00). Note that the estimate ob
tained here differs slightly from the one provided in Section 3.1 because 
of the partial pooling among results in the hierarchical model. In the 
general discussion we present hypotheses to account for infants' success 
when tested on native language phonotactic patterns and their failure to 
learn from artificial languages. 

3.2. Part II: Variables influencing infants' sensitivity to native language 
phonotactics 

Given the positive effect size in the developmental literature evalu
ating sensitivity to native language phonotactics, we investigated which 
linguistic and methodological variables might moderate the overall 
effect. 

3.2.1. Method matters 
The distribution of infant age across methods and languages in our 

dataset is summarized in Fig. 5. Examining the distribution of infants 
across methods it is clear that HPP was the experimental method of 
choice in almost all the experiments. With the caveat that the number of 
experiments varied greatly across methods, and that method was further 
confounded with age — for example, central fixation was used with 
younger infants, whereas pointing was only used with the oldest — we 
evaluated the moderating influence of method on the effect size. We did 
this because variation in effect size as a function of method can inform 
experimental design for future research. 

The estimates of the effect size along with the number of studies that 
used this method from a model with a fixed effect of Method (4 levels: 
word learning, pointing, HPP, central fixation) are listed in Table 1. Our 
results indicate that sensitivity to phonotactic patterns was least likely to 

Fig. 3. Funnel plot which graphs 1/Standard Error (vertical axis) as a function 
of Hedge's g (on the horizontal axis). Dotted lines indicate median meta-analytic 
effect size from model reported in Section 3.1, with paler lines delimiting the 
95% Credible Interval. 

Fig. 4. Effect size plotted as a function of language type (natural vs. artificial). 
Point estimates are the medians of the posterior distribution for each group, 
with error bars encompassing the 95% Credible Intervals. Each translucent 
black dot represents an individual effect size from a study in the model. 
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be detected using pointing tasks (53%), with HPP, central fixation or 
even word learning being equally, and highly effective (>95%). Finally, 
the largest effect size was observed with central fixation. Note, however, 
that these estimates do not take into consideration the different ages of 
infants tested with each method. Therefore, they should be considered as 
guides only when running future experiments with infants of compara
ble ages to those included in the analysis here. 

3.2.2. Infants are already tuned into phonotactics at 6-months 
Next, we turned to the overall effect of age on sensitivity to phono

tactics, the substantive question laid out in the introduction which 
motivated our study. Recall that sensitivity to native phonotactic pat
terns is thought to emerge only after 9-months (Jusczyk et al., 1994; and 
many others). In keeping with this developmental timeline first found by 
Jusczyk et al., in English-learning infants, the majority of infants tested 
cross-linguistically in subsequent years were also between 8- and 10- 
months (Fig. 5). In fact, in summarizing our data, we found two natu
ral breaks in the distribution of Age as shown in Fig. 1; the first was 
around 8-months (235 days; see also Fig. 1), and the second was around 
10-months (325 days; Fig. 1). We used these natural breaks to categorize 
age into three bins (<8-months, 140:234 days; between 8 and 10-months, 
270:322 days; >10-months, 339:614 days) in all analyses involving age 
in this paper. In keeping with conventional wisdom, we expected a 
significant positive effect size at the two older ages; further, if sensitivity 

to phonotactics develops between 6 and 9-months, we expected to find 
an aggregate effect size of 0 in infants below 8-months. 

The estimates for the three levels of the Age predictor from the model 
described above are displayed in Table 2. Because the credible interval 
for infants below 8-months includes an effect size of 0, it is possible that 
they are not yet sensitive to phonotactic patterns. However, this 
outcome is quite unlikely. At all three ages the likelihood of a positive 
effect size was greater than 90%, with little difference between the age 
groups. The magnitude of the effect size at the two youngest age groups 
was also comparable. Thus, we found no evidence that sensitivity to 
native language phonotactic patterns emerges between 6- and 9-months. 
Instead, the aggregate evidence from the meta-analysis shows that in
fants are already sensitive to native language phonotactic patterns 
before 8-months. 

3.3. Sensitivity varies by dependency type 

Although in the previous section we presented an analysis that 
focused only on the infants' age, investigating age effects on the effect 
size is complicated by several factors. Most obviously, it is quite likely 
that when and to what extent infants tune into native patterns, varies 
from language to language. 

This could be because languages differ in how much evidence sup
porting a specific pattern is available to infants. Consider the phono
tactic pattern of vowel harmony. Vowel harmony is widely attested in 

Fig. 5. Infant age in months, split by native language and experimental method. Each colored point represents a study, the black triangle shows the mean for a given 
language, and error bars show one SD. 

Table 1 
Median, 95% CrIs, and p(β > 0) for effect size by method, with the number of 
experiments included, and the total infants in that group.  

Test Method Median ES 95% CrI p Experiments (N) 

Word learning 0.62 [− 0.06, 1.28] 0.96 3 (136) 
Pointing 0.03 [− 0.71, 0.77] 0.53 2 (24) 
HPP 0.27 [0.09, 0.46] 0.99 74 (1598) 
Central fixation 0.75 [0.12, 1.37] 0.99 4 (108)  

Table 2 
Median, 95% CrIs, and p(β > 0) for effect size by age group, with the number of 
experiments included, and the total infants in that group.  

Age Group Median ES 95% CrI p Experiments (N) 

< 8 months 0.26 [− 0.10, 0.61] 0.92 17 (387) 
8–10 months 0.29 [0.06, 0.52] 0.99 47 (1044) 
> 10 months 0.47 [0.12, 0.82] 0.99 19 (435)  
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many of the world's language families (for a review see Mintz, Walker, 
Welday, & Kidd, 2018), where non-adjacent vowels in a word are con
strained to be perceptually similar. Not all languages have vowel har
mony — for instance, Hungarian and Turkish have harmony but not 
English — and even when two languages have vowel harmony, they may 
vary in the extent to which it is observed in the lexicon: for instance, 
vowel harmony is less pervasive in the Hungarian lexicon than in 
Turkish (see text accompanying results from Harrison, Thomforde, & 
O'Keefe, 2004; see also Alderete & Finley, 2016). Thus, it is quite 
plausible that infants learning Turkish, because they have greater 
experience with vowel harmony, tune into it earlier than infants 
learning Hungarian. 

Similarly, we know based on computational modeling that segment 
co-occurrence probabilities are more useful for finding words in English 
than in languages like French, Korean, or Japanese (Boruta, Peperkamp, 
Crabbé, & Dupoux, 2011; Daland & Pierrehumbert, 2011; Daland & 
Zuraw, 2013). Because of differences in the usefulness of segment co- 
occurrence restrictions in their native language experience, English- 
learning infants tested on segment co-occurrence restrictions may 
demonstrate a larger effect size compared to infants learning French or 
Japanese. 

There are also differences in the extent to which adult listeners rely 
on specific phonotactic patterns, even within typologically similar lan
guages. English adult listeners' perception is affected to a greater extent 
by diphone probabilities than that of Dutch adult listeners (Park, Hoff
mann, Shin, & Warner, 2018; Smits, Warner, McQueen, & Cutler, 2003; 
Warner, Smits, McQueen, & Cutler, 2005). It is possible that these dif
ferences in the cue weighting of co-occurrence restrictions across lan
guages affect when infants learning these respective languages tune into 
them. Under such an account, English-learning infants would tune into 
diphone-based phonotactic patterns earlier or to a greater extent than 
Dutch-learning infants. 

Another source of variation in effect size across languages could stem 
from qualitative differences among the patterns themselves. There is a 
large literature showing that it is harder for infants to learn non-adjacent 
compared to adjacent dependencies, whether they be over syllables or 
words (for a review see Wilson et al., 2020). Because vowel harmony 
involves tracking non-adjacent dependencies, infants may well be 
delayed in tuning into them compared to local segment co-occurrence 
restrictions. 

Unfortunately, even with a dataset of almost 2000 infants learning 8 
languages, the data were too unevenly distributed to evaluate the 
interaction of Age, Dependency Type and Language. Instead, given the 
unequal representation of data across languages (Fig. 5), we evaluated 
the effect of the interaction between Age and Dependency Type, 
aggregated over Language. Differences between infants learning 
different Languages were probed only when sufficient data were 
available. 

We considered three categories of phonotactic dependencies: non- 
local vowel dependencies (vowel harmony in Turkish and Hungarian; 
templatic melody in Hebrew), non-local consonant dependencies (in 
French and Japanese), and local dependencies (all others). Local de
pendencies, the largest subtype, included phonotactic patterns based on 
the frequency or positional frequency of a segment (unigram measures) 
and/or those based on the relative frequency of adjacent segments 
(bigram measures) as described in Jusczyk et al. (1994). 

We separated the non-adjacent dependencies into those involving 
consonants and vowels for two reasons. Although infants' perception of 
vowel categories starts to become language specific by 6-months (see 
Tsuji & Cristia, 2014 for a meta-analytic review), their consonant cat
egories do so only later in the first year (e.g., Tsao, Lui, & Kuhl, 2006; 
Werker & Tees, 1984). Therefore, one might expect a similar asymmetry 
in the time course of infants' sensitivity to vowel dependencies relative 
to those defined over consonants. However, in experiments with artifi
cial languages, infants have been reported to learn non-adjacent 
consonantal dependencies more easily than ones involving vowels (e. 

g., Bonatti, Peña, Nespor, & Mehler, 2005; Newport & Aslin, 2004), so it 
is also possible that infants tune into non-local consonant dependencies 
earlier. 

We first confirmed that the interaction between Age (<8-months; 
between 8 and 10-months; >10-months) and Dependency Type (V- 
Nonlocal, C-Nonlocal, and Local) was significant (β = − 0.80, 95% CrI 
[− 1.48, − 0.11], p(β < 0) = 0.99). Given the significant interaction, we 
next analyzed the Age effects within each Dependency Type separately. 
The results are presented in Table 3, and summarized graphically in 
Fig. 6. The results show distinct developmental trajectories based on 
phonotactic dependency type. 

3.3.1. Sub-patterns in infants' sensitivity to non-local dependencies 
For non-local vowel dependencies, there was a shift in the direction 

of preference around 8-months from familiar to novel. Infants younger 
than 8-months preferred high frequency sequences that were familiar, as 
indicated by the medium to large positive effect size; a positive effect 
size was also the most likely outcome of an experiment testing sensitivity 
at this age (93%). In contrast, infants between 8 and 10-months were 
more likely (~77%) to prefer less frequent sequences, i.e., those with 
novel non-local vowel dependencies, as indicated by the negative effect 
size. However, the evidence in support of a novelty preference was 
modest. 

Interestingly, all experiments that contributed to the strong early 
sensitivity to non-local vowel dependencies investigated vowel har
mony. From Fig. 7 (left panel), we can see that infants learning a lan
guage with vowel harmony showed a large preference for harmonic 
sequences before 8-months (β = 0.54, CrI = [− 0.34, 1.36], p(β > 0) =
0.89, based on 4 experiments with 131 Turkish-learning infants), with 
an almost equal swing towards novelty with increasing experience (β =
− 0.40, CrI = [− 1.23, 0.48], p(β > 0) = 0.18, based on 3 experiments 
with 118 infants learning Turkish or Hungarian; i.e., 82% likelihood of 
negative effect size). Note that the results from infants older than 10- 
months were consistent with an effect size of 0, but unreliable because 
they were based on data from one experiment with only 14 infants (β =
− 0.14, CrI = [− 1.05, 0.79], p(β > 0) = 0.39). The findings on harmony 
are quite compelling because they are based on within lab comparisons 
of infants learning just two languages — Turkish and Hungarian — at 
different ages and using the same procedures. 

A different pattern emerged for non-local vowel dependencies that 
were not based on harmony (Fig. 7, right panel). These data were from 
French- and Hebrew-learning infants' sensitivity to arbitrary co- 
occurrence restrictions between non-adjacent vowels. Only infants 

Table 3 
Median and 95% CrIs and p(β > 0) for effect size by Age group nested within 
Dependency Type, with the number of experiments included, and the total in
fants in that group.  

Dependency 
Type 

Age 
Group 

Median 
ES 

95% CrI p Experiments 
(N) 

V-Nonlocal < 8 
months 

0.64 [− 0.21, 
1.47] 

0.93 4 (131) 

8–10 
months 

− 0.27 [− 1.00, 
0.44] 

0.23 7 (190) 

> 10 
months 

0.16 [− 0.63, 
0.92] 

0.66 4 (60) 

C-Nonlocal < 8 
months 

− 0.20 [− 0.65, 
0.26] 

0.20 6 (104) 

8–10 
months 

0.34 [− 0.02, 
0.69] 

0.97 13 (216) 

> 10 
months 

0.21 [− 0.39, 
0.79] 

0.76 3 (44) 

Local < 8 
months 

0.07 [− 0.42, 
0.53] 

0.63 7 (152) 

8–10 
months 

0.52 [0.06, 
0.96] 

0.99 27 (638) 

> 10 
months 

0.28 [− 0.23, 
0.75] 

0.87 12 (331)  
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older than 10-months preferred familiar native language sequences 
based on restrictions between non-adjacent vowels (β = 0.58, CrI =
[− 0.15, 1.22], p(β > 0) = 0.95, based on 3 experiments with 46 infants). 
No data were available for the youngest age group and the effect size in 
the 8- to 10-month-old bin was centered at 0 (β = 0, CrI = [− 0.77, 0.67], 
p(β > 0) = 0.53, based on 4 experiments with 72 infants). This shows 
that infants tuned into non-local vowel dependencies other than 

harmony only after 10-months. 
The developmental time course for non-local consonantal de

pendencies was somewhat similar to that for the non-local vowel de
pendencies that were not based on harmony. These findings were all on 
the dependency between labial and coronal consonants and almost 
exclusively from French-learning infants (French n =304; Japanese n =
60). From Fig. 6 and Table 3 we can see that not only did the credible 
interval for infants below 8-months include 0, the likelihood of a posi
tive effect size was low, only 19%. In contrast, between 8 and 10- 
months, the effect size was always positive. Thus, our results 
confirmed that a sensitivity to non-adjacent consonantal dependency 
emerges between 8 and 10 months (Gonzalez-Gomez et al., 2014; 
Gonzalez-Gomez & Nazzi, 2012a; Nazzi et al., 2009). 

In sum, infants tuned into non-adjacent consonant dependencies 
earlier than to non-adjacent vowel dependencies, but only when the 
latter were not harmony-based. 

3.3.2. Infants are sensitive to local dependencies between 8- and 10-months 
The last subtype, local dependencies, had the most diversity in terms 

of methodology, pattern tested, and native language background of in
fants. Collapsing across these categories, we confirmed that infants were 
sensitive to local dependencies in their native language both between 8 
and 10 months and after 10-months (>87%). Infants younger than 8- 
months, however, were not sensitive to local dependencies; the effect 
size was centered near 0, with only a 63% likelihood of a positive effect 
size. 

As can be seen from Fig. 6, English (n = 716) and Dutch (n = 301) 
were the two languages with the greatest number of infants spanning 
different ages tested. In all these experiments infants were tested on 
local dependencies. This allowed us to investigate how language-specific 
differences might present within a specific subtype. The median effect 
size for each age group within the two languages is presented in Fig. 8. 
The performance of infants learning English and Dutch differed at the 
two younger ages, but not when infants were older than 10-months. 
Infants below 8-months and between 8- and 10-months were more 
likely to demonstrate a positive effect if they were learning English (59% 
and 98%) not Dutch (38% and 85%). Even when the likelihood of a 
positive effect was overwhelming, that is between 8- and 10-months, the 
size of the effect was larger in infants learning English (β = 0.60, CrI =
[0.06, 1.11], p(β > 0) = 0.98, based on 15 experiments with 344 infants) 
compared to Dutch (β = 0.22, CrI = [− 0.26, 0.68], p(β > 0) = 0.85, 
based on 9 experiments with 222 infants). These differences in the 
likelihood of a positive effect as well as the magnitude of the effect size 

Fig. 6. Effect size by binned Age crossed with Dependency Type, with the point 
representing the median, and the thicker and thinner intervals encompassing 
the central 50% and 95% Credible Intervals for values of effect size, respec
tively. The dashed vertical line marks an effect size of zero. 

Fig. 7. Effect size by binned Age crossed with type of nonlocal vowel de
pendency (harmony in the left panel, non-harmony in the right panel), with the 
point representing the median, and the thicker and thinner intervals encom
passing the central 50% and 95% Credible Intervals for values of effect size, 
respectively. The dashed vertical line marks an effect size of zero. 

Fig. 8. Effect size by binned Age for local dependencies in Dutch (left panel) 
and English (right panel). The point represents the median, and the thicker and 
thinner intervals encompassing the central 50% and 95% Credible Intervals for 
values of effect size, respectively. The dashed vertical line marks an effect size 
of zero. 
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are consistent with a greater role of segment-segment co-occurrence 
restrictions in English compared to Dutch. 

In summary, the results from the meta-analysis demonstrated that 
infants under 8-months were sensitive to phonotactics involving vowel 
harmony, but not other local or non-local dependencies. Between 8- and 
10-months, infants demonstrated a novelty preference for vowel har
mony and a robust familiarity preference for phonotactic patterns based 
on both local dependencies and non-local consonantal dependencies, 
with the former being larger. Only after 10-months was a consistent 
preference for non-local, non-harmony-based vowel dependencies 
evident. Finally, specific language experience altered the likelihood of a 
positive effect as well as its magnitude at the earliest stages of acquisi
tion. In the next section we examined potential moderators that could 
affect the meta-analytic effect size for local dependencies, the subset of 
the data that was the largest and most heterogeneous. 

3.3.3. Sensitivity is greater at edges, but unaffected by sonority sequencing 
violations 

Finally, we evaluated two other moderators, one domain-general, 
and the other domain-specific, that have been proposed to influence 
the learning of local dependencies. First, we evaluated the influence of 
whether the pattern being tested was at the edge of a word. There is 
empirical as well as computational evidence that speech material at the 
edges of words, phrases or even sentences is very salient to infants (e.g., 
Daland & Pierrehumbert, 2011; Endress, Nespor, & Mehler, 2009; Ferry 
et al., 2016; Newport, 1990). Speech material at edges is thought to be 
privileged based on a domain-general advantage in sensory encoding 
and recall (for a review see Hurlstone, Hitch, & Baddeley, 2014; Sun
dara, 2018). 

We only evaluated the edge effect within the set of local de
pendencies because all non-local dependencies involved segments at 
edges. Within local dependencies, the differences between effect size for 
phonotactic patterns at word edges and word medially was credible. 
Studies with phonotactic dependencies located word medially (10 
studies with 176 infants) had an effect size of 0.29 (95% CrI = [− 0.54, 
0.91], p(β > 0) = 0.81), whereas studies where the patterns were at an 
edge (36 studies with 945 infants) had an effect size of 0.46 (95% CrI =
[− 0.03, 0.91], p(β > 0) = 0.97). The greater likelihood of the effect size 
as well as its larger magnitude confirmed that infants privilege speech 
material at edges for learning phonotactics. Fig. 9 shows effect size as a 
function of edge. 

The final moderator we evaluated is more controversial. Based on 
typological tendencies, a language-independent linguistic bias referred 
to as the sonority sequencing principle is thought to govern the distri
bution of segments in specific syllable positions. Individual segments 
vary in sonority, typically depending on the extent to which the vocal 
track is open or the sound is loud (Parker, 2002); thus vowels are 
considered to be the most sonorous while oral stop consonants (e.g. [p], 
[t]) are the least. Segment combinations that result in an increase in 
sonority from the onset of the syllable, and decrease in sonority at the 
offset of the syllable are the most common across languages. Although it 
is contentious whether knowledge of sonority sequencing is innate or 
learned from language experience, it has been shown to influence word 
segmentation as well as phonotactic judgments by adults (e.g., Daland 
et al., 2011; Ettlinger, Finn, & Hudson Kam, 2012). Additionally, in one 
study, brain activity in newborns has been shown to differ in response to 
changes in sonority sequencing (Gómez et al., 2014). Thus, it is possible 
that infants' perception is influenced by sonority sequencing principles 
even in infancy. 

This analysis was restricted to the subset of studies targeting CC 
clusters. If infants are sensitive to the SSP, we expected studies with low 
frequency items that violated them to have a larger effect size. However, 
a statistical analysis revealed no difference in the effect size of studies 
where low frequency items violated the SSP (4 studies with 102 infants; 
β = 0.27, 95% CrI = [− 0.66, 1.20], p(β > 0) = 0.72) compared to those 
that did not involve violations (1 study with 70 infants); β = 0.21, 95% 
CrI = [− 0.75, 1.17], p(β > 0) = 0.67). However, note that there was very 
little data for this comparison because in virtually all studies with CC 
clusters, low frequency items also violated sonority sequencing 
principles. 

4. General discussion 

We aggregated data from 1866 infants learning 8 languages, tested 
using 4 methods across 83 experiments from 26 studies, to address when 
and how infants acquire native language phonotactics. We had three 
main findings from the meta-analysis. First, overall, infants favored the 
higher frequency phonotactic patterns as demonstrated by a positive 
effect size in the small-to-medium range. Second, infants were sensitive 
to some phonotactic patterns even before 9-months. Third, the devel
opmental trajectory as well as the size of the effect differed substantially 
by dependency type: infants were sensitive to some non-local de
pendencies in their native language even before they were sensitive to 
local dependencies; this is even more unexpected because the non-local 
dependency involved vowels. We discuss each of these findings in turn. 

We were motivated to conduct this meta-analysis by Cristia's (2018) 
findings that infants do not learn phonotactic patterns from short term 
exposure to an artificial language in the lab. This is surprising because 
with one exception, all studies summarized by Cristia (2018) tested 
patterns on word edges, a position that is privileged. In contrast with her 
findings, we found strong evidence of infants' ability to detect frequent 
phonotactic patterns from their native language. The natural and arti
ficial language studies used similar methods and tested infants in a 
similar age range, so neither of these variables can account for the 
disparate findings. We suggest two alternative explanations. 

The trivial explanation is that the extent of exposure in the artificial 
language experiments with infants, typically less than 4 min, is just too 
little for infants. In fact, it is not just phonotactics that infants fail to 
learn from short-term exposure to an artificial language; they also fail to 
learn phonetic categories (Cristia, 2018). Given evidence that sleep can 
facilitate generalization and consolidation of memory (see Gómez & 
Edgin, 2015 for a review), perhaps repeating short-duration exposure on 
consecutive days, or even testing on a second day, would result in better 
outcomes. Alternatively, simply increasing the amount of exposure to 
around 20 min, as is typical in adult artificial language experiments that 
have been successfully replicated, may also serve the same purpose. 

A second explanation may involve interference from the native 

Fig. 9. Effect size plotted as a function of edge status. Point estimates are the 
median of the posterior distribution for each group, with error bars encom
passing the 95% Credible Intervals. Each translucent black dot represents an 
individual effect size from an experiment. Note that this plot excludes two 
outliers (from condition “at edge”) to make the differences more visible. 
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language patterns that infants are learning at the same time. Outcomes 
of artificial language experiments have been reported to differ in adults 
learning different native languages attesting to interference effects 
(White et al., 2018). So, it is possible that because of these interference 
effects infants were unable to learn from short term exposure in the lab. 
Regardless of the reasons, we can be sure that infants do not learn local 
dependencies, or even non-local consonant dependencies that are at the 
beginning and ends of words (hypothesized to be the easiest to learn; 
Endress & Mehler, 2010) from limited exposure in the lab. Whether 
infants can learn non-local vowel dependencies, particularly vowel 
harmony, from short term exposure to artificial languages in the lab, 
remains an open question. 

One of the surprising findings of the meta-analysis was the early 
sensitivity infants demonstrated to vowel harmony. Infants demon
strated a significant, medium- to large-sized preference for harmonic 
sequences in their native language even before 8-months of age. This is 
unexpected because vowel harmony involves learning a non-local de
pendency and non-local dependencies are well-documented to be diffi
cult to learn (for a review see Wilson et al., 2020). To account for the 
widespread prevalence of harmony across the world's languages, in 
some phonological frameworks like Autosegmental Phonology and 
Articulatory Phonology (Browman & Goldstein, 1992; Goldsmith, 
1990), vowels are represented on a distinct tier, allowing V–V de
pendencies to be treated as local. Under such accounts, all V–V de
pendencies should be privileged. However, this is not consistent with 
findings from infant experiments using either artificial or natural 
languages. 

Research using artificial languages shows that infants find non-local 
dependencies between vowels to be particularly challenging to learn 
when they are arbitrary (e.g., Bonatti et al., 2005, Newport & Aslin, 
2004 — neither included in the Cristia, 2018 meta-analysis). Indeed, in 
this meta-analysis as well, we found evidence that infants tuned into 
non-local, vowel dependencies not based on harmony only after 10- 
months. In contrast, infants tuned into non-local consonant de
pendencies between 8- and 10-months. So, infants tuned into non- 
adjacent, arbitrary dependencies involving vowels later in develop
ment than to ones involving consonants. In sum, not all V–V de
pendencies are privileged as might be expected if they are represented 
on a separate tier. Thus, the substance of the dependency itself, above 
and beyond its distribution in the stimulus items (local vs. non-adjacent) 
must also impact the developmental trajectory. 

Not only were infants sensitive to vowel harmony at the earliest ages 
as demonstrated by a large familiarity preference, they showed a com
plete switch to a novelty preference between 8- and 10-months. A switch 
was not observed for any other dependency type, further attesting to the 
uniqueness of vowel harmony. A switch in preference for non-harmonic 
sequences after 8-months is likely to be a result of the unique experience 
infants learning vowel harmony languages have. Unlike other de
pendency types, languages with vowel harmony provide evidence for it 
in nearly every multisyllabic word. A switch to a novelty preference 
within a few months may be a result of this overwhelming experience 
with vowel harmony that infants have (e.g., Houston-Price & Nakai, 
2004; Hunter & Ames, 1988). 

It is also possible that it is easier for infants to learn vowel harmony 
compared to any other dependency type, even when provided with a 
comparable amount of evidence in their input, because it is perceptually 
salient. Consistent with this explanation, there is some evidence that 
even English-learning infants who have no experience with harmony are 
able to use it to segment words (Mintz et al., 2018). If all infants are 
initially sensitive to vowel harmony, then our results show that sensi
tivity to vowel harmony for those with experience is facilitated before 8- 
months of age. Based on the findings of Mintz et al. (2018), it seems 
likely that for infants without experience with a native language 
exhibiting vowel harmony, the ability to detect vowel harmony declines 
at around the same age. Such a developmental trajectory is consistent 
with Attunement theories of perceptual development (Aslin & Pisoni, 

1980; Aslin, Werker, & Morgan, 2002). Attunement theories also pro
vide the most comprehensive account of infants' discrimination of 
speech sound categories (Sundara et al., 2018). 

The learning of all other phonotactic dependencies, including arbi
trary non-local vowel restrictions, is induced by language experience 
consistent with Learning theories of perceptual development (Aslin 
et al., 2002; Aslin & Pisoni, 1980). Our findings showed that the earliest 
patterns that infants acquire are likely to be local restrictions on the 
edges of words and phrases. Effect sizes were more likely to be positive, 
and larger for local dependencies at edges. In contrast, our results did 
not provide evidence that infants are sensitive to the sonority 
sequencing principle, although the data available were very limited. 
Whether this is because the effect size associated with the SSP is small, or 
because it varies to a large extent with language-specific experience 
remains to be determined. 

At least for local dependencies, our results demonstrated that the 
timing of sensitivity, as well as the effect size of sensitivity to phono
tactic patterns is affected by specific language experience. Infants 
learning English were more likely to show a positive, larger effect size 
for local phonotactic patterns compared to those learning Dutch. This 
was consistent with the findings from adults that native listeners of 
English rely more on diphone probabilities than native listeners of 
Dutch. Further research is needed to tease apart the specific properties of 
the input infants are tuning into to extract local dependencies and how 
that changes from infancy to adulthood. 

By 8- to 10-months, infants are sensitive to both local dependencies 
and non-local consonantal dependencies. However, the effect size for 
infants' sensitivity to non-local dependencies remained smaller than that 
for local dependencies, consistent with proposals that the former are 
harder for infants to learn. A consistent, positive preference for non-local 
arbitrary vowel dependencies emerged even later — only after 10- 
months. This is also consistent with claims based on artificial lan
guages that (arbitrary) non-local vowel dependencies are more chal
lenging for infants to learn. 

Infants older than 10-months were most likely to show a positive 
effect size for all dependencies — except for vowel harmony where the 
number of infants tested was very small. We judge that this effect is 
likely to be quite robust because infants in this age group were tested 
using all 4 methods, and task demands in word learning or pointing 
experiments are quite different from those of listening preference 
experiments. 

In sum, the results from this meta-analysis allowed us to generate 
evidence-based developmental trajectories for infants' sensitivity to 
different phonotactic patterns. Whether infants learn phonotactics from 
words in their lexicon (e.g., Thiessen & Saffran, 2003) or from the un
segmented speech stream (e.g. Adriaans & Kager, 2010; Brent & Cart
wright, 1996; Daland & Pierrehumbert, 2011), we anticipate that the 
acquisition trajectory laid out in this paper will prove useful as a 
benchmark for constraining computational models of acquisition and for 
guiding future infant research. 

5. Conclusion 

In this meta-analysis, we aggregated data from around 2000 infants 
between 0 and 2 years of age, learning 8 languages, using 4 different 
methods from 83 experiments. Using Bayesian modeling, we established 
that unlike with artificial languages, in experiments with natural lan
guage stimuli, infants demonstrate sensitivity to phonotactic patterns. 
By 8-months, infants are already tuned into phonotactic patterns based 
on vowel harmony. Between 8- and 10-months, infants consolidate their 
learning of local restrictions on segments as well as non-local restrictions 
involving consonants. Furthermore, infants' sensitivity to local re
strictions is greater at word edges. Finally, sensitivity to non-local vowel 
restrictions that are not based on harmony are the last to emerge, and 
seen only after 10-months of age. By using Bayesian modeling in 
conjunction with the meta-analysis we were able to integrate the 
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evidentiary value of nonsignificant and significant effects towards 
establishing the developmental timeline. 
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Appendix A. Appendix I 

To re-analyze the 34 studies summarized in Cristia (2018) using Bayesian modeling, we used a Normal (0, 0.5) prior on the intercept, because of the 
finding of no significant directional effect size reported in Cristia (2018). This is in contrast to the model for natural language phonotactic sensitivity. 
Refitting the model with a Normal (1, 0.5) prior on the intercept did not change the results in a meaningful way. The intercept of this model gives an 
estimate of the group-level effect size. 

Fig. A provides a plot for the effect size for the studies from Cristia (2018), with the black dot and grey distribution representing the shrunken meta- 
analytic estimates of the true effect size for that study. Infants in this dataset range in age from 5-months to 17-months. And in all studies but one, 
infants were tested on local dependencies or non-adjacent consonantal dependencies at word edges. The vertical red dashed line marks an effect size of 
zero, and the grey vertical lines mark the median meta-analytic effect size, plus upper and lower bounds of the 95% CrI. 

The effect size for this model based on the 34 experiments summarized by Cristia (2018) was 0.06, CrI = [− 0.19, 0.32], p(β > 0) = 0.68. This is 
consistent with the results reported in Cristia (2018) that the effect size is zero, because the 95% CrI included 0. Further, the Bayesian method used 
here allowed us to more precisely characterize this null effect: a slight majority (68%) of the credible values for the effect size lie above zero consistent 
with a positive effect size, giving only the barest hint of the effect presumed in the literature. Even this small effect was, surprisingly, driven by 
experiments in which infants were taught non-local consonantal dependencies (Median effect size 0.17 [− 0.35, 0.69], p(β > 0) = 0.76) instead of local 
ones (Median effect size = 0.01 [− 0.36, 0.42], p(β > 0) = 0.51). Note that non-local dependencies are presumed to be harder to learn than local ones. 
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Fig. A. Median and 95% Credible Interval for the shrunk effect size for each experiment summarized in Cristia (2018). The vertical dashed red line marks an effect 
size of zero, while the grey vertical lines mark the meta-analytic median effect size plus upper and lower 95% CrIs. (For interpretation of the references to colour in 
this figure legend, the reader is referred to the web version of this article.) 
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Vasishth, S., Mertzen, D., Jäger, L. A., & Gelman, A. (2018). The statistical significance 
filter leads to overoptimistic expectations of replicability. Journal of Memory and 
Language, 103, 151–175. 

Warner, N., Smits, R., McQueen, J. M., & Cutler, A. (2005). Phonological and frequency 
effects on timing of speech perception: A database of Dutch diphone perception. 
Speech Communication, 46, 53–72. 

Werker, J. F., & Tees, R. C. (1984). Cross-language speech perception: Evidence for 
perceptual reorganization during the first year of life. Infant Behavior and 
Development, 7, 49–63. 

White, J., Kager, R., Linzen, T., Markopoulos, G., Martin, A., Nevins, A., Peperkamp, S., 
Polgárdi, K., Topintzi, N., & van de Vijver, R. (2018). Preference for locality is 
affected by the prefix/suffix asymmetry: Evidence from artificial language learning. 
In Proceedings of the Forty-Eighth Annual Meeting of the North East Linguistic Society 
(vol. 3) (pp. 207–220). Amherst, MA, USA: Graduate Linguistics Student Association. 
ISBN 978-1-72760-582-2. 

Wilson, B., Spierings, M., Ravignani, A., Mueller, J. L., Mintz, T. H., Wijnen, F., … Rey, A. 
(2020). Non-adjacent dependency learning in humans and other animals. Topics in 
Cognitive Science, 12, 843–858. https://doi.org/10.1111/tops.12381 

M. Sundara et al.                                                                                                                                                                                                                               

http://refhub.elsevier.com/S0010-0277(21)00416-9/rf0435
http://refhub.elsevier.com/S0010-0277(21)00416-9/rf0435
http://refhub.elsevier.com/S0010-0277(21)00416-9/rf0440
http://refhub.elsevier.com/S0010-0277(21)00416-9/rf0440
http://refhub.elsevier.com/S0010-0277(21)00416-9/rf0440
http://refhub.elsevier.com/S0010-0277(21)00416-9/rf0450
http://refhub.elsevier.com/S0010-0277(21)00416-9/rf0450
http://refhub.elsevier.com/S0010-0277(21)00416-9/rf0450
http://refhub.elsevier.com/S0010-0277(21)00416-9/rf0455
http://refhub.elsevier.com/S0010-0277(21)00416-9/rf0455
http://refhub.elsevier.com/S0010-0277(21)00416-9/rf0455
http://refhub.elsevier.com/S0010-0277(21)00416-9/rf0460
http://refhub.elsevier.com/S0010-0277(21)00416-9/rf0460
http://refhub.elsevier.com/S0010-0277(21)00416-9/rf0460
http://refhub.elsevier.com/S0010-0277(21)00416-9/rf0460
http://refhub.elsevier.com/S0010-0277(21)00416-9/rf0460
http://refhub.elsevier.com/S0010-0277(21)00416-9/rf0460
https://doi.org/10.1111/tops.12381

	Infants' developing sensitivity to native language phonotactics: A meta-analysis
	1 Introduction
	2 Methods
	2.1 Paper identification and selection
	2.1.1 Data entry

	2.2 Derived variables
	2.2.1 Effect size
	2.2.2 Standard deviation

	2.3 Analyses

	3 Results and discussion
	3.1 Part I: Are infants sensitive to native language phonotactics?
	3.1.1 Infants do learn native language phonotactics
	3.1.2 Evidence of (slight) bias in the literature
	3.1.3 Some evidence for selective submission or publication practices
	3.1.4 No evidence of p-hacking
	3.1.5 Comparison to Cristia's (2018) meta-analysis on artificial language learning experiments

	3.2 Part II: Variables influencing infants' sensitivity to native language phonotactics
	3.2.1 Method matters
	3.2.2 Infants are already tuned into phonotactics at 6-months

	3.3 Sensitivity varies by dependency type
	3.3.1 Sub-patterns in infants' sensitivity to non-local dependencies
	3.3.2 Infants are sensitive to local dependencies between 8- and 10-months
	3.3.3 Sensitivity is greater at edges, but unaffected by sonority sequencing violations


	4 General discussion
	5 Conclusion
	Acknowledgements
	Appendix A Appendix I
	References


